BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20939607)

  • 1. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Hsieh YP; Farhat H; Kavan L; Hofmann M; Kong J; Dresselhaus MS
    Nano Lett; 2010 Nov; 10(11):4619-26. PubMed ID: 20939607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman doping profiles of polyelectrolyte SWNTs in solution.
    Dragin F; PĂ©nicaud A; Iurlo M; Marcaccio M; Paolucci F; Anglaret E; Martel R
    ACS Nano; 2011 Dec; 5(12):9892-7. PubMed ID: 22092255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between in Situ Raman scattering and electrical conductance for an individual double-walled carbon nanotube.
    Yuan S; Zhang Q; You Y; Shen ZX; Shimamoto D; Endo M
    Nano Lett; 2009 Jan; 9(1):383-7. PubMed ID: 19143506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.
    Li S; Liu C; Hou PX; Sun DM; Cheng HM
    ACS Nano; 2012 Nov; 6(11):9657-61. PubMed ID: 23025663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen doping in carbon nanotubes.
    Ewels CP; Glerup M
    J Nanosci Nanotechnol; 2005 Sep; 5(9):1345-63. PubMed ID: 16193950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.
    Mathur A; Tweedie M; Roy SS; Maguire PD; McLaughlin JA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4392-6. PubMed ID: 19916463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment.
    Zheng G; Li Q; Jiang K; Zhang X; Chen J; Ren Z; Fan S
    Nano Lett; 2007 Jun; 7(6):1622-5. PubMed ID: 17508771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube.
    Song X; Han X; Fu Q; Xu J; Wang N; Yu DP
    Nanotechnology; 2009 May; 20(19):195202. PubMed ID: 19420633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoengineering Ni(x)Fe(1-x) catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes.
    Chiang WH; Sakr M; Gao XP; Sankaran RM
    ACS Nano; 2009 Dec; 3(12):4023-32. PubMed ID: 19954166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ raman measurements of suspended individual single-walled carbon nanotubes under strain.
    Lee SW; Jeong GH; Campbell EE
    Nano Lett; 2007 Sep; 7(9):2590-5. PubMed ID: 17718583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes.
    Abdula D; Shim M
    ACS Nano; 2008 Oct; 2(10):2154-9. PubMed ID: 19206462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
    Zhou Z; Eres G; Jin R; Subedi A; Mandrus D; Kim EH
    Nanotechnology; 2009 Feb; 20(8):085709. PubMed ID: 19417470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling nonequilibrium phonon populations in single-walled carbon nanotubes.
    Steiner M; Qian H; Hartschuh A; Meixner AJ
    Nano Lett; 2007 Aug; 7(8):2239-42. PubMed ID: 17629345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes.
    Harris JM; Iyer GR; Bernhardt AK; Huh JY; Hudson SD; Fagan JA; Hobbie EK
    ACS Nano; 2012 Jan; 6(1):881-7. PubMed ID: 22148890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy of free-standing individual semiconducting single-wall carbon nanotubes.
    Paillet M; Langlois S; Sauvajol JL; Marty L; Iaia A; Naud C; Bouchiat V; Bonnot AM
    J Phys Chem B; 2006 Jan; 110(1):164-9. PubMed ID: 16471515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes.
    Hennrich F; Krupke R; Kappes MM; Löhneysen HV
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1166-71. PubMed ID: 16108444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of semiconducting carbon nanotubes.
    Yuan D; Liu J
    Small; 2007 Mar; 3(3):366-7. PubMed ID: 17285648
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.