These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20940080)

  • 81. Controllable synthesis of VSB-5 microspheres and microrods: growth mechanism and selective hydrogenation catalysis.
    Liu SJ; Cheng HY; Zhao FY; Gong JY; Yu SH
    Chemistry; 2008; 14(13):4074-81. PubMed ID: 18335443
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.
    Karaoğlu MH; Uğurlu M
    J Hazard Mater; 2010 Feb; 174(1-3):864-71. PubMed ID: 19864054
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Development of C18-functionalized magnetic silica nanoparticles as sample preparation technique for the determination of ergosterol in cigarettes by microwave-assisted derivatization and gas chromatography/mass spectrometry.
    Sha Y; Deng C; Liu B
    J Chromatogr A; 2008 Jul; 1198-1199():27-33. PubMed ID: 18533171
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst.
    Yang C; Jia L; Chen C; Liu G; Fang W
    Bioresour Technol; 2011 Mar; 102(6):4580-4. PubMed ID: 21262568
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Far-infrared-assisted preparation of a graphene-nickel nanoparticle hybrid for the enrichment of proteins and peptides.
    Qu W; Bao H; Zhang L; Chen G
    Chemistry; 2012 Dec; 18(49):15746-52. PubMed ID: 23112097
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Modification of red mud by acid treatment and its application for CO removal.
    Sushil S; Batra VS
    J Hazard Mater; 2012 Feb; 203-204():264-73. PubMed ID: 22204836
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sono-catalytic degradation and fast mineralization of p-chlorophenol: La(0.7)Sr(0.3)MnO3 as a nano-magnetic green catalyst.
    Taherian S; Entezari MH; Ghows N
    Ultrason Sonochem; 2013 Nov; 20(6):1419-27. PubMed ID: 23618850
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Highly efficient electro-generation of hydrogen peroxide using NCNT/NF/CNT air diffusion electrode for electro-Fenton degradation of p-nitrophenol.
    Tang Q; Wang D; Yao DM; Yang CW; Sun YC
    Water Sci Technol; 2016; 73(7):1652-8. PubMed ID: 27054737
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method.
    Yin C; Cai J; Gao L; Yin J; Zhou J
    J Hazard Mater; 2016 Mar; 305():15-20. PubMed ID: 26642442
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Liquid phase hydrodechlorination of chlorophenols at lower temperature on a novel Pd catalyst.
    Jin Z; Yu C; Wang X; Wan Y; Li D; Lu G
    J Hazard Mater; 2011 Feb; 186(2-3):1726-32. PubMed ID: 21239107
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Preparation and characterization of NiW-nHA composite catalyst for hydrocracking.
    Zhou G; Hou Y; Liu L; Liu H; Liu C; Liu J; Qiao H; Liu W; Fan Y; Shen S; Rong L
    Nanoscale; 2012 Dec; 4(24):7698-703. PubMed ID: 23128670
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
    Zhu N; Cao Y; Shi C; Wu P; Ma H
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7627-38. PubMed ID: 26739993
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol.
    Begum R; Farooqi ZH; Butt Z; Wu Q; Wu W; Irfan A
    J Environ Sci (China); 2018 Oct; 72():43-52. PubMed ID: 30244750
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Production of glucose by hydrolysis of cellulose at 423 K in the presence of activated hydrotalcite nanoparticles.
    Fang Z; Zhang F; Zeng HY; Guo F
    Bioresour Technol; 2011 Sep; 102(17):8017-21. PubMed ID: 21745738
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method.
    Tsai HC; Lo SL
    J Hazard Mater; 2011 Feb; 186(2-3):1431-7. PubMed ID: 21211905
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst.
    Zhang YB; Quan X; Zhao HM; Chen S; Yang FL
    J Environ Sci (China); 2005; 17(3):433-6. PubMed ID: 16083118
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol.
    Díaz JA; Díaz-Moreno R; Silva LS; Dorado F; Romero A; Valverde JL
    J Colloid Interface Sci; 2012 Aug; 380(1):173-81. PubMed ID: 22682327
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The Effect of Composition on the Properties and Application of CuO-NiO Nanocomposites Synthesized Using a Saponin-Green/Microwave-Assisted Hydrothermal Method.
    Al-Yunus A; Al-Arjan W; Traboulsi H; Hessien M
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612928
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microwave-assisted forced degradation using high-throughput microtiter platforms.
    Prekodravac B; Damm M; Kappe CO
    J Pharm Biomed Anal; 2011 Dec; 56(5):867-73. PubMed ID: 21865000
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe
    Hu L; Wang P; Liu G; Zheng Q; Zhang G
    Chemosphere; 2020 Feb; 240():124977. PubMed ID: 31726600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.