These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20940080)

  • 101. Mineralization of quinoline in aqueous solution by microwave-assisted catalytic wet peroxide oxidation system: process optimization, products analysis and degradation route research.
    Li Z; Liu F; Zhang B; Ding Y; You H; Jin C
    Water Sci Technol; 2018 Nov; 78(5-6):1324-1335. PubMed ID: 30388089
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Chitosan-supported palladium catalyst. 5. Nitrophenol degradation using palladium supported on hollow chitosan fibers.
    Vincent T; Guibal E
    Environ Sci Technol; 2004 Aug; 38(15):4233-40. PubMed ID: 15352466
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Degradation of Malachite green by Potassium persulphate, its enhancement by 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane nickel(II) perchlorate complex, and removal of antibacterial activity.
    Gokulakrishnan S; Parakh P; Prakash H
    J Hazard Mater; 2012 Apr; 213-214():19-27. PubMed ID: 22341490
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Microwave-assisted fabrication of g-C
    Ayodhya D; Veerabhadram G
    Environ Technol; 2021 Feb; 42(6):826-841. PubMed ID: 31318310
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Highly effective and green microwave catalytic oxidation degradation of nitrophenols over Bi
    Qiu Y; Zhou J
    Chemosphere; 2019 Jan; 214():319-329. PubMed ID: 30267905
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Preparation, characterization and catalytic activity of NiOx and NiOx/ZrO2 for oxidation of phenol in aqueous solution.
    Petrov D; Christoskova S; Stoyanova M; Ivanova V; Karashanova D
    Acta Chim Slov; 2014; 61(4):759-70. PubMed ID: 25551715
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Microwave-assisted synthesis of gold nanoparticles supported on Mn
    Morad M; Karim MA; Altass HM; Khder AERS
    Environ Technol; 2021 Jul; 42(17):2680-2689. PubMed ID: 31875754
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands.
    Herrera-Melián JA; Martín-Rodríguez AJ; Ortega-Méndez A; Araña J; Doña-Rodríguez JM; Pérez-Peña J
    J Environ Manage; 2012 Aug; 105():53-60. PubMed ID: 22525833
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Nickel hydroxide nanoparticles decorated napthalene sulfonic acid-doped polyaniline nanotubes as efficient catalysts for nitroarene reduction.
    Sypu VS; Bhaumik M; Raju K; Maity A
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):979-989. PubMed ID: 32961349
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol.
    Krebsz M; Kótai L; Sajó IE; Váczi T; Pasinszki T
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577151
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Bleaching Kinetic and Mechanism Study of Congo Red Catalyzed by ZrO2 Nanoparticles Prepared by Using a Simple Precipitation Method.
    Pouretedal HR; Hosseini M
    Acta Chim Slov; 2010 Jun; 57(2):415-23. PubMed ID: 24061739
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.
    Kumar M; Deka S
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16071-81. PubMed ID: 25171089
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Iridium Oxide Nanoparticles and Iridium/Iridium Oxide Nanocomposites: Photochemical Fabrication and Application in Catalytic Reduction of 4-Nitrophenol.
    Xu D; Diao P; Jin T; Wu Q; Liu X; Guo X; Gong H; Li F; Xiang M; Ronghai Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16738-49. PubMed ID: 26158693
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Kinetic study of 2-nitrophenol photodegradation on Al-pillared montmorillonite doped with copper.
    Najjar W; Chirchi L; Santos E; Ghorhel A
    J Environ Monit; 2001 Dec; 3(6):697-701. PubMed ID: 11785647
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Microwave-assisted degradation of chitosan for a possible use in inhibiting crop pathogenic fungi.
    Li K; Xing R; Liu S; Qin Y; Meng X; Li P
    Int J Biol Macromol; 2012 Dec; 51(5):767-73. PubMed ID: 22829054
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Enhanced degradation of p-nitrophenol in soil in a pulsed discharge plasma-catalytic system.
    Wang T; Lu N; Li J; Wu Y; Su Y
    J Hazard Mater; 2011 Nov; 195():276-80. PubMed ID: 21940101
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Nickel on Oxidatively Modified Carbon as a Promising Cost-Efficient Catalyst for Reduction of
    Galyaltdinov S; Svalova A; Brusko V; Kirsanova M; Dimiev AM
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080402
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.
    Min J; Wang F; Cai Y; Liang S; Zhang Z; Jiang X
    Chem Commun (Camb); 2015 Jan; 51(4):761-4. PubMed ID: 25421649
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Application of birnessite-type solids prepared by sol-gel and oxidation methods in photocatalytic degradation of 4-nitrophenol.
    González-Morán S; González B; Vicente MA; Trujillano R; Rives V; Gil A; Korili SA
    Environ Technol; 2022 Jan; 43(3):402-410. PubMed ID: 32619385
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Formation of platinum-coated templates of insulin nanowires used in reducing 4-nitrophenol.
    Batzli KM; Love BJ
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():103-11. PubMed ID: 25579902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.