BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20940097)

  • 1. Microscopic and spectroscopic evaluation of novel PLGA-chitosan Nanoplexes as an ocular delivery system.
    Jain GK; Pathan SA; Akhter S; Jayabalan N; Talegaonkar S; Khar RK; Ahmad FJ
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):397-403. PubMed ID: 20940097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan/PLGA particles for controlled release of α-tocopherol in the GI tract via oral administration.
    Murugeshu A; Astete C; Leonardi C; Morgan T; Sabliov CM
    Nanomedicine (Lond); 2011 Nov; 6(9):1513-28. PubMed ID: 21707297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles.
    Contreras-Ruiz L; de la Fuente M; García-Vázquez C; Sáez V; Seijo B; Alonso MJ; Calonge M; Diebold Y
    Cornea; 2010 May; 29(5):550-8. PubMed ID: 20335805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Method for Preparing Surface-Modified Fluocinolone Acetonide Loaded PLGA Nanoparticles for Ocular Use: In Vitro and In Vivo Evaluations.
    Salama AH; Mahmoud AA; Kamel R
    AAPS PharmSciTech; 2016 Oct; 17(5):1159-72. PubMed ID: 26589410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells.
    Tahara K; Sakai T; Yamamoto H; Takeuchi H; Hirashima N; Kawashima Y
    Int J Pharm; 2009 Dec; 382(1-2):198-204. PubMed ID: 19646519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance.
    Enríquez de Salamanca A; Diebold Y; Calonge M; García-Vazquez C; Callejo S; Vila A; Alonso MJ
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1416-25. PubMed ID: 16565375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.
    Win KY; Feng SS
    Biomaterials; 2005 May; 26(15):2713-22. PubMed ID: 15585275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intracellular uptake ability of chitosan-coated Poly (D,L-lactide-co-glycolide) nanoparticles.
    Kim BS; Kim CS; Lee KM
    Arch Pharm Res; 2008 Aug; 31(8):1050-4. PubMed ID: 18787796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery.
    Gupta H; Aqil M; Khar RK; Ali A; Bhatnagar A; Mittal G
    J Drug Target; 2011 Jul; 19(6):409-17. PubMed ID: 20678034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides.
    Nafee N; Taetz S; Schneider M; Schaefer UF; Lehr CM
    Nanomedicine; 2007 Sep; 3(3):173-83. PubMed ID: 17692575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP).
    Diebold Y; Jarrín M; Sáez V; Carvalho EL; Orea M; Calonge M; Seijo B; Alonso MJ
    Biomaterials; 2007 Mar; 28(8):1553-64. PubMed ID: 17169422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2'-O-methyl-RNA directed against telomerase in lung cancer cells.
    Taetz S; Nafee N; Beisner J; Piotrowska K; Baldes C; Mürdter TE; Huwer H; Schneider M; Schaefer UF; Klotz U; Lehr CM
    Eur J Pharm Biopharm; 2009 Jun; 72(2):358-69. PubMed ID: 18703137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting.
    Chung YI; Kim JC; Kim YH; Tae G; Lee SY; Kim K; Kwon IC
    J Control Release; 2010 May; 143(3):374-82. PubMed ID: 20109508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of biodegradable nanoparticles with intestinal cells: the effect of surface hydrophilicity.
    Gaumet M; Gurny R; Delie F
    Int J Pharm; 2010 May; 390(1):45-52. PubMed ID: 19833180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands.
    Fischer S; Foerg C; Ellenberger S; Merkle HP; Gander B
    J Control Release; 2006 Mar; 111(1-2):135-44. PubMed ID: 16377017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow Focusing: a versatile technology to produce size-controlled and specific-morphology microparticles.
    Martín-Banderas L; Flores-Mosquera M; Riesco-Chueca P; Rodríguez-Gil A; Cebolla A; Chávez S; Gañán-Calvo AM
    Small; 2005 Jul; 1(7):688-92. PubMed ID: 17193506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles.
    Chung TW; Wang SS; Tsai WJ
    Biomaterials; 2008 Jan; 29(2):228-37. PubMed ID: 17953984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular uptake of Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method.
    Xiong S; Zhao X; Heng BC; Ng KW; Loo JS
    Biotechnol J; 2011 May; 6(5):501-8. PubMed ID: 21259442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.