These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20940208)

  • 21. Stem-cell treatments for spinal-cord injury may be worth the risk.
    Owens J
    Nature; 2009 Apr; 458(7242):1101. PubMed ID: 19407774
    [No Abstract]   [Full Text] [Related]  

  • 22. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury.
    Lowry N; Goderie SK; Adamo M; Lederman P; Charniga C; Gill J; Silver J; Temple S
    Exp Neurol; 2008 Feb; 209(2):510-22. PubMed ID: 18029281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Strategies for axonal regeneration after spinal cord injury].
    Kitamura K; Nakamura M; Toyama Y; Okano H
    Tanpakushitsu Kakusan Koso; 2008 Mar; 53(4 Suppl):411-7. PubMed ID: 21089312
    [No Abstract]   [Full Text] [Related]  

  • 24. [Transplantation of neural stem cells into spinal cord after injury].
    Nakamura M; Toyama Y
    Nihon Rinsho; 2003 Mar; 61(3):463-8. PubMed ID: 12701174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Embryonic stem cells: are useful in clinic treatments?
    Aznar J; Sánchez JL
    J Physiol Biochem; 2011 Mar; 67(1):141-4. PubMed ID: 21246421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell biology. Ready or not? Human ES cells head toward the clinic.
    Vogel G
    Science; 2005 Jun; 308(5728):1534-8. PubMed ID: 15947149
    [No Abstract]   [Full Text] [Related]  

  • 27. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury.
    Kerr CL; Letzen BS; Hill CM; Agrawal G; Thakor NV; Sterneckert JL; Gearhart JD; All AH
    Int J Neurosci; 2010 Apr; 120(4):305-13. PubMed ID: 20374080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice.
    Bottai D; Cigognini D; Madaschi L; Adami R; Nicora E; Menarini M; Di Giulio AM; Gorio A
    Exp Neurol; 2010 Jun; 223(2):452-63. PubMed ID: 20100476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
    Ronaghi M; Erceg S; Moreno-Manzano V; Stojkovic M
    Stem Cells; 2010 Jan; 28(1):93-9. PubMed ID: 19904738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stem cells for the treatment of spinal cord injury.
    Coutts M; Keirstead HS
    Exp Neurol; 2008 Feb; 209(2):368-77. PubMed ID: 17950280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. World's first clinical trial of human embryonic stem cell therapy cleared.
    Geron Corporation
    Regen Med; 2009 Mar; 4(2):161. PubMed ID: 19322956
    [No Abstract]   [Full Text] [Related]  

  • 32. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports.
    Dietrich WD; Cappuccino A; Cappuccino H
    Curr Sports Med Rep; 2011; 10(1):50-4. PubMed ID: 21228652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury.
    Chua SJ; Bielecki R; Yamanaka N; Fehlings MG; Rogers IM; Casper RF
    Spine (Phila Pa 1976); 2010 Jul; 35(16):1520-6. PubMed ID: 20581748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Embryonic stem cells. Future perspectives].
    Groebner M; David R; Franz WM
    Internist (Berl); 2006 May; 47(5):502, 504-8. PubMed ID: 16609891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal cord regeneration: moving tentatively towards new perspectives.
    Jones DG; Anderson ER; Galvin KA
    NeuroRehabilitation; 2003; 18(4):339-51. PubMed ID: 14757930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice.
    Boido M; Rupa R; Garbossa D; Fontanella M; Ducati A; Vercelli A
    Eur J Neurosci; 2009 Sep; 30(5):833-46. PubMed ID: 19712091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Current situation and progression of induced pluripotent stem cells in treating spinal cord injury].
    Liu W; Zhang SK; Yan M; Liu LD
    Zhongguo Gu Shang; 2011 Jul; 24(7):616-20. PubMed ID: 21870412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First evidence of long term safety of human embryonic stem cells is reported.
    Wise J
    BMJ; 2014 Oct; 349():g6248. PubMed ID: 25318639
    [No Abstract]   [Full Text] [Related]  

  • 40. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy.
    Chapman AR; Scala CC
    Kennedy Inst Ethics J; 2012 Sep; 22(3):243-61. PubMed ID: 23285793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.