These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20940341)

  • 1. Chiral histidine selection by D-ribose RNA.
    Illangasekare M; Turk R; Peterson GC; Lladser M; Yarus M
    RNA; 2010 Dec; 16(12):2370-83. PubMed ID: 20940341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA affinity for molecular L-histidine; genetic code origins.
    Majerfeld I; Puthenvedu D; Yarus M
    J Mol Evol; 2005 Aug; 61(2):226-35. PubMed ID: 15999244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plausibility of RNA-templated peptides: simultaneous RNA affinity for adjacent peptide side chains.
    Turk-Macleod RM; Puthenvedu D; Majerfeld I; Yarus M
    J Mol Evol; 2012 Apr; 74(3-4):217-25. PubMed ID: 22538927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs.
    Chawla M; Chermak E; Zhang Q; Bujnicki JM; Oliva R; Cavallo L
    Nucleic Acids Res; 2017 Nov; 45(19):11019-11032. PubMed ID: 28977572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity.
    Geiger A; Burgstaller P; von der Eltz H; Roeder A; Famulok M
    Nucleic Acids Res; 1996 Mar; 24(6):1029-36. PubMed ID: 8604334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore investigation of the stereoselective interactions between Cu(2+) and D,L-histidine amino acids engineered into an amyloidic fragment analogue.
    Schiopu I; Iftemi S; Luchian T
    Langmuir; 2015; 31(1):387-96. PubMed ID: 25479713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.
    Gaspin C; Cavaillé J; Erauso G; Bachellerie JP
    J Mol Biol; 2000 Apr; 297(4):895-906. PubMed ID: 10736225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mirror-image RNA that binds D-adenosine.
    Klussmann S; Nolte A; Bald R; Erdmann VA; Fürste JP
    Nat Biotechnol; 1996 Sep; 14(9):1112-5. PubMed ID: 9631061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Templated Peptide Bond Formation Promotes L-Homochirality.
    Węgrzyn E; Mejdrová I; Müller FM; Nainytė M; Escobar L; Carell T
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202319235. PubMed ID: 38407532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalanine-binding RNAs and genetic code evolution.
    Illangasekare M; Yarus M
    J Mol Evol; 2002 Mar; 54(3):298-311. PubMed ID: 11847556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An RNA-amino acid complex and the origin of the genetic code.
    Yarus M
    New Biol; 1991 Feb; 3(2):183-9. PubMed ID: 2065012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deoxypolypeptides bind and cleave RNA.
    Cheng L; Mahendran A; Gonzalez RL; Breslow R
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7920-4. PubMed ID: 24843145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A diminutive and specific RNA binding site for L-tryptophan.
    Majerfeld I; Yarus M
    Nucleic Acids Res; 2005; 33(17):5482-93. PubMed ID: 16186130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The consequences for amino acid homochirality if L-ribose RNA and not D-ribose RNA had evolved first.
    Bailey JM
    Biochem Soc Trans; 1997 Nov; 25(4):S651. PubMed ID: 9450079
    [No Abstract]   [Full Text] [Related]  

  • 15. 13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein.
    Shajani Z; Varani G
    J Mol Biol; 2005 Jun; 349(4):699-715. PubMed ID: 15890361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme.
    Temperini C; Scozzafava A; Vullo D; Supuran CT
    Chemistry; 2006 Sep; 12(27):7057-66. PubMed ID: 16807956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of histidine 784 and tyrosine 639 in ribose discrimination by T7 RNA polymerase.
    Brieba LG; Sousa R
    Biochemistry; 2000 Feb; 39(5):919-23. PubMed ID: 10653635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An L-RNA Aptamer that Binds and Inhibits RNase.
    Olea C; Weidmann J; Dawson PE; Joyce GF
    Chem Biol; 2015 Nov; 22(11):1437-1441. PubMed ID: 26590636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz spectroscopy for quantitatively elucidating the crystal transformation of chiral histidine enantiomers to racemic compounds.
    Bian Y; Zhu Z; Zhang X; Zeng R; Yang B
    Food Chem; 2023 Apr; 406():135043. PubMed ID: 36450194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient cleavage of pre-tRNAs by E. coli RNAse P RNA requires the 2'-hydroxyl of the ribose at the cleavage site.
    Kleineidam RG; Pitulle C; Sproat B; Krupp G
    Nucleic Acids Res; 1993 Mar; 21(5):1097-101. PubMed ID: 7681942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.