BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20940715)

  • 1. Mitochondrial injury underlies hyporeactivity of arterial smooth muscle in severe shock.
    Song R; Bian H; Wang X; Huang X; Zhao KS
    Am J Hypertens; 2011 Jan; 24(1):45-51. PubMed ID: 20940715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporeactivity during severe shock.
    Zhao K; Liu J; Jin C
    Chin Med J (Engl); 2000 Jan; 113(1):59-64. PubMed ID: 11775213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of L-type calcium channels in arteriolar smooth muscle cells is involved in the pathogenesis of vascular hyporeactivity in severe shock.
    Zhao Q; Zhao KS
    Shock; 2007 Dec; 28(6):717-721. PubMed ID: 17607159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atractyloside induces low contractile reaction of arteriolar smooth muscle through mitochondrial damage.
    Song R; Bian H; Huang X; Zhao KS
    J Appl Toxicol; 2012 Jun; 32(6):402-8. PubMed ID: 21598287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxynitrite leads to arteriolar smooth muscle cell membrane hyperpolarization and low vasoreactivity in severe shock.
    Zhao KS; Liu J; Yang GY; Jin C; Huang Q; Huang X
    Clin Hemorheol Microcirc; 2000; 23(2-4):259-67. PubMed ID: 11321449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock.
    Wang X; Song R; Bian HN; Brunk UT; Zhao M; Zhao KS
    Am J Physiol Regul Integr Comp Physiol; 2012 Apr; 302(7):R805-14. PubMed ID: 22277937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage.
    Li P; Meng X; Bian H; Burns N; Zhao KS; Song R
    Oncotarget; 2015 Nov; 6(35):36998-7011. PubMed ID: 26473372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of Bay K 8644 on arteriole smooth muscle cell membrane potential in rats with severe hemorrhagic shock].
    Zhao Q; Zhao KS
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Apr; 26(4):421-4. PubMed ID: 16624742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydatin--a new mitochondria protector for acute severe hemorrhagic shock treatment.
    Wang X; Song R; Chen Y; Zhao M; Zhao KS
    Expert Opin Investig Drugs; 2013 Feb; 22(2):169-79. PubMed ID: 23241098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATP-sensitive K(+) channel and membrane potential in the pathogenesis of vascular hyporeactivity in severe hemorrhagic shock.
    Liu J; Zhao K
    Chin J Traumatol; 2000 Feb; 3(1):39-44. PubMed ID: 11882266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypersensitivity of BKCa to Ca2+ sparks underlies hyporeactivity of arterial smooth muscle in shock.
    Zhao G; Zhao Y; Pan B; Liu J; Huang X; Zhang X; Cao C; Hou N; Wu C; Zhao KS; Cheng H
    Circ Res; 2007 Aug; 101(5):493-502. PubMed ID: 17641230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial effect of cyclosporine A on traumatic hemorrhagic shock.
    Lei Y; Peng X; Liu L; Dong Z; Li T
    J Surg Res; 2015 May; 195(2):529-40. PubMed ID: 25752214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemorheologic events in severe shock.
    Zhao KS
    Biorheology; 2005; 42(6):463-77. PubMed ID: 16369084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence.
    Chen SJ; Wu CC; Yang SN; Lin CI; Yen MH
    Br J Pharmacol; 2000 Sep; 131(2):213-22. PubMed ID: 10991913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of ATP-sensitive potassium channels in a model of a delayed vascular hyporeactivity induced by lipopolysaccharide in rats.
    Sorrentino R; d'Emmanuele di Villa Bianca R; Lippolis L; Sorrentino L; Autore G; Pinto A
    Br J Pharmacol; 1999 Jul; 127(6):1447-53. PubMed ID: 10455295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of opening of mitochondrial ATP-sensitive K⁺ channel on the distribution of cytochrome C and on proliferation of human pulmonary arterial smooth muscle cells in hypoxia].
    Hu HL; Zhang ZX; Zhao JP; Wang T; Xu YJ
    Sheng Li Xue Bao; 2006 Jun; 58(3):262-8. PubMed ID: 16786111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of extracellular pH on vasopressin inhibition of ATP-sensitive K+ channels in vascular smooth muscle cells.
    Kawano T; Tanaka K; Nazari H; Oshita S; Takahashi A; Nakaya Y
    Anesth Analg; 2007 Dec; 105(6):1714-9, table of contents. PubMed ID: 18042872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of pinacidil hyperpolarizing cardioplegia on myocardial ischemia reperfusion injury by mitochondrial KATP channels.
    Yu T; Fu XY; Liu XK; Yu ZH
    Chin Med J (Engl); 2011 Dec; 124(24):4205-10. PubMed ID: 22340388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.
    Valenzuela F; García-Saisó S; Lemini C; Ramírez-Solares R; Vidrio H; Mendoza-Fernández V
    Vascul Pharmacol; 2005 Aug; 43(2):120-7. PubMed ID: 15958287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach to treatment of shock--restitution of vasoreactivity.
    Zhao KS; Huang X; Liu J; Huang Q; Jin C; Jiang Y; Jin J; Zhao G
    Shock; 2002 Aug; 18(2):189-92. PubMed ID: 12166785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.