These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20940763)

  • 1. Optofluidic compound microlenses made by emulsion techniques.
    Calixto S; Rosete-Aguilar M; Sanchez-Marin FJ; Marañon V; Arauz-Lara JL; Olivares DM; Calixto-Solano M; Martinez-Prado EM
    Opt Express; 2010 Aug; 18(18):18703-11. PubMed ID: 20940763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing.
    Llobera A; Wilke R; Büttgenbach S
    Lab Chip; 2005 May; 5(5):506-11. PubMed ID: 15856086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step replication of a highly integrated PDMS optofluidic analysis system.
    Amberg M; Stoebenau S; Sinzinger S
    Appl Opt; 2010 Aug; 49(22):4326-30. PubMed ID: 20676190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.
    Kim SH; Jeon SJ; Yang SM
    J Am Chem Soc; 2008 May; 130(18):6040-6. PubMed ID: 18393502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling and optimization of micro optofluidic lenses.
    Song C; Nguyen NT; Tan SH; Asundi AK
    Lab Chip; 2009 May; 9(9):1178-84. PubMed ID: 19370234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discretely tunable optofluidic compound microlenses.
    Fei P; He Z; Zheng C; Chen T; Men Y; Huang Y
    Lab Chip; 2011 Sep; 11(17):2835-41. PubMed ID: 21799999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive index measurement through image analysis with an optofluidic device.
    Calixto S; Rosete-Aguilar M; Sanchez-Marin FJ; Calixto-Solano M; López-Mariscal C
    Opt Express; 2012 Jan; 20(3):2073-80. PubMed ID: 22330448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial compound eye zoom camera.
    Duparré J; Wippermann F; Dannberg P; Bräuer A
    Bioinspir Biomim; 2008 Dec; 3(4):046008. PubMed ID: 19029582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization.
    Camou S; Fujita H; Fujii T
    Lab Chip; 2003 Feb; 3(1):40-5. PubMed ID: 15100804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical performance of an oscillating, pinned-contact double droplet liquid lens.
    Olles JD; Vogel MJ; Malouin BA; Hirsa AH
    Opt Express; 2011 Sep; 19(20):19399-406. PubMed ID: 21996880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically inspired artificial compound eyes.
    Jeong KH; Kim J; Lee LP
    Science; 2006 Apr; 312(5773):557-61. PubMed ID: 16645090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes.
    Li X; Ding Y; Shao J; Liu H; Tian H
    Opt Lett; 2011 Oct; 36(20):4083-5. PubMed ID: 22002393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(dimethylsiloxane) photonic microbioreactors based on segmented waveguides for local absorbance measurement.
    Demming S; Vila-Planas J; Aliasghar Zadeh S; Edlich A; Franco-Lara E; Radespiel R; Büttgenbach S; Llobera A
    Electrophoresis; 2011 Feb; 32(3-4):431-9. PubMed ID: 21298669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of two-element zoom systems based on variable power lenses.
    Miks A; Novak J
    Opt Express; 2010 Mar; 18(7):6797-810. PubMed ID: 20389699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-distance optical guiding of colloidal particles using holographic axilens.
    Ahlawat S; Verma RS; Dasgupta R; Gupta PK
    Appl Opt; 2011 May; 50(13):1933-40. PubMed ID: 21532676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic.
    Hung KY; Fan CC; Tseng FG; Chen YK
    Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses.
    Yoon YZ; Cicuta P
    Opt Express; 2010 Mar; 18(7):7076-84. PubMed ID: 20389728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.