These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20940772)

  • 1. Second-harmonic generation in poled polymers: pre-poling history paradigm.
    Pawlik G; Rau I; Kajzar F; Mitus AC
    Opt Express; 2010 Aug; 18(18):18793-804. PubMed ID: 20940772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide.
    Lin JH; Lai ND; Chiu CH; Lin CY; Rieger GW; Young JF; Chien FS; Hsu CC
    Opt Express; 2008 May; 16(11):7832-41. PubMed ID: 18545493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculation of second and third virial coefficients of small-scale comb polymers on lattice.
    Shida K; Kasuya A; Ohno K; Kawazoe Y; Nakamura Y
    J Chem Phys; 2007 Apr; 126(15):154901. PubMed ID: 17461661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
    Hehmeyer OJ; Arya G; Panagiotopoulos AZ; Szleifer I
    J Chem Phys; 2007 Jun; 126(24):244902. PubMed ID: 17614585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-recognition and aggregation between diblock (charged/neutral) polyelectrolytes by Monte Carlo simulations.
    Feng J; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124913. PubMed ID: 16599731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.
    Ren N; Liang J; Qu X; Li J; Lu B; Tian J
    Opt Express; 2010 Mar; 18(7):6811-23. PubMed ID: 20389700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and persistence length of molecular bottle-brushes by Monte Carlo simulations.
    Elli S; Ganazzoli F; Timoshenko EG; Kuznetsov YA; Connolly R
    J Chem Phys; 2004 Apr; 120(13):6257-67. PubMed ID: 15267513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues.
    Gusachenko I; Latour G; Schanne-Klein MC
    Opt Express; 2010 Aug; 18(18):19339-52. PubMed ID: 20940829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-harmonic generation optical activity of a polypeptide alpha-helix at the air/water interface.
    Mitchell SA; McAloney RA; Moffatt D; Mora-Diez N; Zgierski MZ
    J Chem Phys; 2005 Mar; 122(11):114707. PubMed ID: 15836243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poling quality evaluation of optical superlattice using 2D Fourier transform method.
    Lv XJ; Zhao LN; Lu J; Zhao G; Liu H; Qin YQ; Zhu SN
    Opt Express; 2009 Sep; 17(20):18241-9. PubMed ID: 19907615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second-order nonlinear optical susceptibilities of nonelectrically poled DR1-PMMA guest-host polymers.
    Sugita A; Sato Y; Ito K; Murakami K; Tamaki Y; Mase N; Kawata Y; Tasaka S
    J Phys Chem B; 2013 Nov; 117(47):14857-64. PubMed ID: 24191722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of spatially resolved reflectance signals to coincident variations in tissue optical properties.
    Arifler D
    Appl Opt; 2010 Aug; 49(22):4310-20. PubMed ID: 20676188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and nonlinear optical properties of a peripherally functionalized hyperbranched polymer by DR1 chromophores.
    Scarpaci A; Blart E; Montembault V; Fontaine L; Rodriguez V; Odobel F
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1799-806. PubMed ID: 20355797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random sequential adsorption kinetics of dimers and trimers on geometrically disordered substrates.
    Cortés J; Valencia E
    J Colloid Interface Sci; 2002 Aug; 252(1):256-8. PubMed ID: 16290786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Monte Carlo simulations for propagation of light in biomedical tissues.
    Banerjee S; Sharma SK
    Appl Opt; 2010 Aug; 49(22):4152-9. PubMed ID: 20676167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J; Bachelier G; Duboisset J; Bertorelle F; Russier-Antoine I; Jonin C; Benichou E; Brevet PF
    Opt Express; 2010 Oct; 18(21):22314-23. PubMed ID: 20941132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Master equation approach to folding kinetics of lattice polymers based on conformation networks.
    Luo YP; Huang MC; Wu JW; Liaw TM; Lin SC
    J Chem Phys; 2007 Apr; 126(13):134907. PubMed ID: 17430067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.