These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20941001)

  • 21. Proton-exchanged 36 degrees Y-X LiTaO3 waveguides for surface acoustic wave.
    Chung CJ; Kao KS; Cheng CC; Chen YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):502-5. PubMed ID: 16529127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using a slightly tapered optical fiber to attract and transport microparticles.
    Sheu FW; Wu HY; Chen SH
    Opt Express; 2010 Mar; 18(6):5574-9. PubMed ID: 20389573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam.
    Michihata M; Hayashi T; Takaya Y
    Appl Opt; 2009 Nov; 48(32):6143-51. PubMed ID: 19904310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-step replication of a highly integrated PDMS optofluidic analysis system.
    Amberg M; Stoebenau S; Sinzinger S
    Appl Opt; 2010 Aug; 49(22):4326-30. PubMed ID: 20676190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical biosensors for cell adhesion.
    Ramsden JJ; Horvath R
    J Recept Signal Transduct Res; 2009; 29(3-4):211-23. PubMed ID: 19635032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide.
    Lin PT; Lee PT
    Opt Lett; 2011 Feb; 36(3):424-6. PubMed ID: 21283211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffraction engineering of multimode waveguides using computer-generated planar holograms.
    Tseng SY
    Opt Express; 2009 Nov; 17(24):21465-71. PubMed ID: 19997387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells.
    Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R
    Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical manipulation of microspheres along a subwavelength optical wire.
    Brambilla G; Murugan GS; Wilkinson JS; Richardson DJ
    Opt Lett; 2007 Oct; 32(20):3041-3. PubMed ID: 17938693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides.
    Dong NN; Chen F; Jaque D
    Opt Express; 2010 Mar; 18(6):5951-6. PubMed ID: 20389614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.
    Gebennikov D; Mittler S
    Langmuir; 2013 Feb; 29(8):2615-22. PubMed ID: 23336214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice.
    Yudistira D; Janner D; Benchabane S; Pruneri V
    Opt Lett; 2009 Oct; 34(20):3205-7. PubMed ID: 19838274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams.
    Kozawa Y; Sato S
    Opt Express; 2010 May; 18(10):10828-33. PubMed ID: 20588937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface transport and stable trapping of particles and cells by an optical waveguide loop.
    Hellesø OG; Løvhaugen P; Subramanian AZ; Wilkinson JS; Ahluwalia BS
    Lab Chip; 2012 Sep; 12(18):3436-40. PubMed ID: 22814473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical trapping of red blood cells in living animals with a water immersion objective.
    Zhong MC; Gong L; Zhou JH; Wang ZQ; Li YM
    Opt Lett; 2013 Dec; 38(23):5134-7. PubMed ID: 24281528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides.
    Polzius R; Schneider T; Biert FF; Bilitewski U; Koschinski W
    Biosens Bioelectron; 1996; 11(5):503-14. PubMed ID: 8729240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evaluation of interaction between red blood cells in blood coagulation by optical tweezers.
    Yang BW; Mu YH; Huang KT; Li Z; Wu JL; Lin YA
    Blood Coagul Fibrinolysis; 2010 Sep; 21(6):505-10. PubMed ID: 20581665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.