These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20941120)

  • 21. Cut-wire-pair structures as two-dimensional magnetic metamaterials.
    Powell DA; Shadrivov IV; Kivshar YS
    Opt Express; 2008 Sep; 16(19):15185-90. PubMed ID: 18795056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chirality switching device designed with transformation optics.
    Shen Y; Ding K; Sun W; Zhou L
    Opt Express; 2010 Sep; 18(20):21419-26. PubMed ID: 20941039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing and suppressing radiation with some permeability-near-zero structures.
    Jin Y; He S
    Opt Express; 2010 Aug; 18(16):16587-93. PubMed ID: 20721049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers.
    Zeng Y; Chen HT; Dalvit DA
    Opt Express; 2013 Feb; 21(3):3540-6. PubMed ID: 23481811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative refraction in semiconductor metamaterials.
    Hoffman AJ; Alekseyev L; Howard SS; Franz KJ; Wasserman D; Podolskiy VA; Narimanov EE; Sivco DL; Gmachl C
    Nat Mater; 2007 Dec; 6(12):946-50. PubMed ID: 17934463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scheme for achieving coherent perfect absorption by anisotropic metamaterials.
    Zhang X; Wu Y
    Opt Express; 2017 Mar; 25(5):4860-4874. PubMed ID: 28380754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wavelength-tunable microbolometers with metamaterial absorbers.
    Maier T; Brückl H
    Opt Lett; 2009 Oct; 34(19):3012-4. PubMed ID: 19794799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A perfect absorber made of a graphene micro-ribbon metamaterial.
    Alaee R; Farhat M; Rockstuhl C; Lederer F
    Opt Express; 2012 Dec; 20(27):28017-24. PubMed ID: 23263036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
    Wen QY; Xie YS; Zhang HW; Yang QH; Li YX; Liu YL
    Opt Express; 2009 Oct; 17(22):20256-65. PubMed ID: 19997251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
    Yoo YJ; Ju S; Park SY; Ju Kim Y; Bong J; Lim T; Kim KW; Rhee JY; Lee Y
    Sci Rep; 2015 Sep; 5():14018. PubMed ID: 26354891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation on the role of the dielectric loss in metamaterial absorber.
    Hu C; Li X; Feng Q; Chen X; Luo X
    Opt Express; 2010 Mar; 18(7):6598-603. PubMed ID: 20389683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wire metamaterials: physics and applications.
    Simovski CR; Belov PA; Atrashchenko AV; Kivshar YS
    Adv Mater; 2012 Aug; 24(31):4229-48. PubMed ID: 22760970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metamaterial electromagnetic wave absorbers.
    Watts CM; Liu X; Padilla WJ
    Adv Mater; 2012 Jun; 24(23):OP98-120, OP181. PubMed ID: 22627995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical theory of extraordinary optical transmission through realistic metallic screens.
    Delgado V; Marqués R; Jelinek L
    Opt Express; 2010 Mar; 18(7):6506-15. PubMed ID: 20389673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals.
    Ding F; Dai J; Chen Y; Zhu J; Jin Y; Bozhevolnyi SI
    Sci Rep; 2016 Dec; 6():39445. PubMed ID: 28000718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual conversion from metal object to dielectric object using metamaterials.
    Jiang WX; Ma HF; Cheng Q; Cui TJ
    Opt Express; 2010 May; 18(11):11276-81. PubMed ID: 20588988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adjustable phase resonances in a compound metallic grating with perpendicular cuts.
    Zhai X; Liu JQ; He MD; Wang LL; Wen S; Fan D
    Opt Express; 2010 Mar; 18(7):6871-6. PubMed ID: 20389706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.