These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20941148)

  • 21. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre.
    Beaudou B; Couny F; Wang YY; Light PS; Wheeler NV; Gérôme F; Benabid F
    Opt Express; 2010 Jun; 18(12):12381-90. PubMed ID: 20588364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bragg reflection waveguide diode lasers.
    Bijlani BJ; Helmy AS
    Opt Lett; 2009 Dec; 34(23):3734-6. PubMed ID: 19953178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor.
    Han T; Liu YG; Wang Z; Zou B; Tai B; Liu B
    Opt Lett; 2010 Jun; 35(12):2061-3. PubMed ID: 20548386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification.
    Février S; Beaudou B; Viale P
    Opt Express; 2010 Mar; 18(5):5142-50. PubMed ID: 20389527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre.
    Cubillas AM; Jiang X; Euser TG; Taccardi N; Etzold BJ; Wasserscheid P; Russell PS
    Analyst; 2017 Mar; 142(6):925-929. PubMed ID: 28112294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications.
    Wang Y; Tan X; Jin W; Ying D; Hoo YL; Liu S
    Opt Lett; 2010 Jan; 35(1):88-90. PubMed ID: 20664682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of spectral characteristics of photonic bandgap waveguides.
    Abeeluck A; Litchinitser N; Headley C; Eggleton B
    Opt Express; 2002 Nov; 10(23):1320-33. PubMed ID: 19451995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-phase-matched tunable band rejection in an all-solid photonic bandgap fiber with high-index rods on graded-index pedestals.
    Ha W; Jeong Y; Park J; Oh K; Kobelke J; Schuster K; Schwuchow A
    Opt Express; 2010 Aug; 18(18):19070-5. PubMed ID: 20940801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrically tunable liquid crystal waveguide attenuators.
    Cai DP; Nien SC; Chiu HK; Chen CC; Lee CC
    Opt Express; 2011 Jun; 19(12):11890-6. PubMed ID: 21716422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-solid photonic bandgap fiber.
    Luan F; George AK; Hedley TD; Pearce GJ; Bird DM; Knight JC; Russell PS
    Opt Lett; 2004 Oct; 29(20):2369-71. PubMed ID: 15532270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid waveguide-based evanescent wave sensor that uses two light sources with different wavelengths.
    Lim JM; Urbanski JP; Choi JH; Thorsen T; Yang SM
    Anal Chem; 2011 Jan; 83(2):585-90. PubMed ID: 21166447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of acoustic pressure with hollow-core photonic bandgap fiber.
    Pang M; Jin W
    Opt Express; 2009 Jun; 17(13):11088-97. PubMed ID: 19550508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical properties of dual-core hollow waveguides.
    Rabii CD; Harrington JA
    Appl Opt; 1996 Nov; 35(31):6249-52. PubMed ID: 21127649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion analysis of hollow-core modes in ultralarge-bandwidth all-silica Bragg fibers with nanosupports.
    Cojocaru E
    Appl Opt; 2006 Mar; 45(9):2039-45. PubMed ID: 16579575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersion properties of liquid-core photonic crystal fibers.
    Karasawa N
    Appl Opt; 2012 Jul; 51(21):5259-65. PubMed ID: 22858970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long period gratings in air-core photonic bandgap fibers.
    Wang Y; Jin W; Ju J; Xuan H; Ho HL; Xiao L; Wang D
    Opt Express; 2008 Feb; 16(4):2784-90. PubMed ID: 18542362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the mode reflection coefficient in air-core photonic bandgap fibers.
    Dangui V; Digonnet MJ; Kino GS
    Opt Express; 2007 Apr; 15(9):5342-59. PubMed ID: 19532788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guidance properties of low-contrast photonic bandgap fibres.
    Argyros A; Birks T; Leon-Saval S; Cordeiro CM; St J Russell P
    Opt Express; 2005 Apr; 13(7):2503-11. PubMed ID: 19495142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.