These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2094128)

  • 1. Differentiation control in cell cycle and development based on the alterations of higher-order chromatin structure. Theory and applications to radiation and chemical action.
    Andreev SG
    Acta Biol Hung; 1990; 41(1-3):35-42. PubMed ID: 2094128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional control of cell cycle progression: the histone gene is a paradigm for the G1/S phase and proliferation/differentiation transitions.
    Stein GS; Stein JL; Van Wijnen AJ; Lian JB
    Cell Biol Int; 1996 Jan; 20(1):41-9. PubMed ID: 8936406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin loops are responsible for higher counts of small DNA fragments induced by high-LET radiation, while chromosomal domains do not affect the fragment sizes.
    Ponomarev AL; Cucinotta FA
    Int J Radiat Biol; 2006 Apr; 82(4):293-305. PubMed ID: 16690597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective.
    Rajasekhar VK; Begemann M
    Stem Cells; 2007 Oct; 25(10):2498-510. PubMed ID: 17600113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Nonhistone chromatin proteins of normal and tumor cells].
    Gershun VA
    Tsitologiia; 1980 Aug; 22(8):875-89. PubMed ID: 6999688
    [No Abstract]   [Full Text] [Related]  

  • 6. Higher-order chromatin structure-dependent repair of DNA double-strand breaks: modeling the elution of DNA from nucleoids.
    Johnston PJ; Olive PL; Bryant PE
    Radiat Res; 1997 Dec; 148(6):561-7. PubMed ID: 9399701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of genes during development: a conserved theme from flies to mammals.
    Vasanthi D; Mishra RK
    J Genet Genomics; 2008 Jul; 35(7):413-29. PubMed ID: 18640621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [DNA methylation--alternative mechanism of chemical carcinogenesis].
    Kostka G; Urbanek K
    Rocz Panstw Zakl Hig; 2005; 56(1):1-14. PubMed ID: 16080440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-repair protein distribution along the tracks of energetic ions.
    Hauptner A; Krücken R; Greubel C; Hable V; Dollinger G; Drexler GA; Deutsch M; Löwe R; Friedl AA; Dietzel S; Strickfaden H; Cremer T
    Radiat Prot Dosimetry; 2006; 122(1-4):147-9. PubMed ID: 17132661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin structure: from nuclei to genes (review).
    Nicolini C
    Anticancer Res; 1983; 3(2):63-86. PubMed ID: 6847133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber.
    Rydberg B; Holley WR; Mian IS; Chatterjee A
    J Mol Biol; 1998 Nov; 284(1):71-84. PubMed ID: 9811543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Notes on a "printomere" mechanism of cellular memory and ion regulation of chromatin configurations.
    Olovnikov AM
    Biochemistry (Mosc); 1999 Dec; 64(12):1427-35. PubMed ID: 10648967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of DNA damage checkpoint genes: switch from preferential induction of point mutations to chromosomal damage precedes the transition towards an aggressive cancer type.
    Hengstler JG; Bolt HM
    Arch Toxicol; 2008 Jun; 82(6):341-2. PubMed ID: 18350279
    [No Abstract]   [Full Text] [Related]  

  • 14. Radiation damage and chromatin structure.
    Barone F; Belli M; Pazzaglia S; Sapora O; Tabocchini MA
    Ann Ist Super Sanita; 1989; 25(1):59-67. PubMed ID: 2665604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chromatin switch.
    Bodnar JW; Bradley MK
    J Theor Biol; 1996 Nov; 183(1):1-7. PubMed ID: 8959107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic aspects of differentiation.
    Arney KL; Fisher AG
    J Cell Sci; 2004 Sep; 117(Pt 19):4355-63. PubMed ID: 15331660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental control via GATA factor interplay at chromatin domains.
    Bresnick EH; Martowicz ML; Pal S; Johnson KD
    J Cell Physiol; 2005 Oct; 205(1):1-9. PubMed ID: 15887235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rb/chromatin connection and epigenetic control: opinion.
    Ferreira R; Naguibneva I; Pritchard LL; Ait-Si-Ali S; Harel-Bellan A
    Oncogene; 2001 May; 20(24):3128-33. PubMed ID: 11420729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins.
    Marchion DC; Bicaku E; Daud AI; Sullivan DM; Munster PN
    Cancer Res; 2005 May; 65(9):3815-22. PubMed ID: 15867379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple pathways control cell growth and transformation: overlapping and independent activities of p53 and p21Cip1/WAF1/Sdi1.
    Cox LS
    J Pathol; 1997 Oct; 183(2):134-40. PubMed ID: 9390024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.