BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2094167)

  • 1. [Norepinephrine-sensitive calcium pools in tail arteries of normotensive and spontaneously hypertensive rats: effects of ryanodine and caffeine].
    Rinaldi GJ
    Acta Physiol Pharmacol Latinoam; 1990; 40(3):339-55. PubMed ID: 2094167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration in sarcoplasmic reticulum-dependent contraction of tail arteries in response to caffeine and noradrenaline in spontaneously hypertensive rats.
    Dohi Y; Aoki K; Fujimoto S; Kojima M; Matsuda T
    J Hypertens; 1990 Mar; 8(3):261-7. PubMed ID: 2159507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca mobilization from the intracellular Ca store in spontaneously hypertensive rats.
    Hano T; Kuchii M; Baba A; Nishio I; Masuyama Y
    J Cardiovasc Pharmacol; 1987; 10 Suppl 10():S72-3. PubMed ID: 2455146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats.
    Kanagy NL; Ansari MN; Ghosh S; Webb RC
    J Hypertens; 1994 Dec; 12(12):1365-72. PubMed ID: 7706695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible mechanism of the potent vasoconstrictor actions of ryanodine on femoral arteries from spontaneously hypertensive rats.
    Asano M; Kuwako M; Nomura Y; Ito KM; Ito K; Uyama Y; Imaizumi Y; Watanabe M
    Br J Pharmacol; 1996 Jun; 118(4):1019-27. PubMed ID: 8799577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Ca2+ release in vascular muscle cells by caffeine, ryanodine, norepinephrine, and neuropeptide Y.
    Erne P; Hermsmeyer K
    J Cardiovasc Pharmacol; 1988; 12 Suppl 5():S85-91. PubMed ID: 2469884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent vasoconstrictor actions of cyclopiazonic acid and thapsigargin on femoral arteries from spontaneously hypertensive rats.
    Nomura Y; Asano M; Ito K; Uyama Y; Imaizumi Y; Watanabe M
    Br J Pharmacol; 1997 Jan; 120(1):65-73. PubMed ID: 9117100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ buffering function of sarcoplasmic reticulum in rat tail arteries: comparison in normotensive and spontaneously hypertensive rats.
    Nomura Y; Asano M
    Jpn J Pharmacol; 2000 Aug; 83(4):335-43. PubMed ID: 11001180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malfunction of arterial sarcoplasmic reticulum leading to faster and greater contraction induced by high-potassium depolarization in young spontaneously hypertensive rats.
    Kojima M; Aoki K; Asano M; Fujimoto S; Matsuda T
    J Hypertens; 1991 Sep; 9(9):783-8. PubMed ID: 1663978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt contraction of vascular smooth muscle is calcium dependent.
    Gallagher MJ; Alade PI; Dominiczak AF; Bohr DF
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):293-7. PubMed ID: 7526063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased calcium sequestration by sarcoplasmic reticulum in small muscular arteries in young spontaneously hypertensive rats.
    Toyoda Y; Shima H; Sasajima H; Nishio I
    Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S223-4. PubMed ID: 9072365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased norepinephrine sensitive intracellular Ca2+ pool in the caudal artery of spontaneously hypertensive rats.
    Aqel MB; Sharma RV; Bhalla RC
    J Hypertens; 1987 Apr; 5(2):249-53. PubMed ID: 3611774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium buffering of resting, voltage-dependent Ca2+ influx by sarcoplasmic reticulum in femoral arteries from spontaneously hypertensive rats at prehypertensive stage.
    Asano M; Nomura Y
    Hypertens Res; 2001 May; 24(3):271-82. PubMed ID: 11409650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine-induced contraction in femoral artery from spontaneously hypertensive rats.
    Kojima M; Dohi Y; Sato K
    Eur J Pharmacol; 1994 Mar; 254(1-2):159-65. PubMed ID: 8206110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different calcium storage pools in vascular smooth muscle cells from spontaneously hypertensive and normotensive Wistar-Kyoto rats.
    Neusser M; Tepel M; Golinski P; Holthues J; Spieker C; Zhu Z; Zidek W
    J Hypertens; 1994 May; 12(5):533-8. PubMed ID: 7930553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Ca2+ buffering function of sarcoplasmic reticulum in small mesenteric arteries from spontaneously hypertensive rats.
    Nomura Y; Asano M
    Hypertens Res; 2002 Mar; 25(2):231-9. PubMed ID: 12047039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin-converting enzyme inhibition during development alters calcium regulation in adult hypertensive rats.
    Traub O; Webb RC
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1503-8. PubMed ID: 7505333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential modulation of norepinephrine-induced contractile response by ryanodine and verapamil in the isolated aortic ring of spontaneously hypertensive and Wistar-Kyoto rats.
    Ashida T; Yoshimi H; Kawano Y; Yoshida K; Kuramochi M; Omae T
    Clin Exp Hypertens A; 1991; 13(4):525-40. PubMed ID: 1934537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased activity of the sodium-calcium exchanger in tail artery of stroke-prone spontaneously hypertensive rats.
    Thompson LE; Rinaldi GJ; Bohr DF
    Blood Vessels; 1990; 27(2-5):197-201. PubMed ID: 2242441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Ca2+ influx and intracellular Ca2+ release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle.
    Rivera L; Brading AF
    BJU Int; 2006 Oct; 98(4):868-75. PubMed ID: 16978287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.