BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20941706)

  • 1. Computational studies of colicin insertion into membranes: the closed state.
    Prieto L; Lazaridis T
    Proteins; 2011 Jan; 79(1):126-41. PubMed ID: 20941706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model.
    Padmavathi PV; Steinhoff HJ
    J Mol Biol; 2008 Apr; 378(1):204-14. PubMed ID: 18353363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
    Zakharov SD; Lindeberg M; Griko Y; Salamon Z; Tollin G; Prendergast FG; Cramer WA
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4282-7. PubMed ID: 9539728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding pathway of the colicin E1 channel protein on a membrane surface.
    Lindeberg M; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin.
    Bermejo IL; Arnulphi C; Ibáñez de Opakua A; Alonso-Mariño M; Goñi FM; Viguera AR
    Biophys J; 2013 Sep; 105(6):1432-43. PubMed ID: 24047995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane insertion of the colicin Ia hydrophobic hairpin.
    Kienker PK; Qiu X; Slatin SL; Finkelstein A; Jakes KS
    J Membr Biol; 1997 May; 157(1):27-37. PubMed ID: 9141356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.
    Lugo MR; Ho D; Merrill AR
    Arch Biochem Biophys; 2016 Oct; 608():52-73. PubMed ID: 27596846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study.
    Lakey JH; Massotte D; Heitz F; Dasseux JL; Faucon JF; Parker MW; Pattus F
    Eur J Biochem; 1991 Mar; 196(3):599-607. PubMed ID: 2013283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state.
    Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F
    J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering.
    Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D
    J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The domain structure of the ion channel-forming protein colicin Ia.
    Ghosh P; Mel SF; Stroud RM
    Nat Struct Biol; 1994 Sep; 1(9):597-604. PubMed ID: 7543362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution.
    Parker MW; Postma JP; Pattus F; Tucker AD; Tsernoglou D
    J Mol Biol; 1992 Apr; 224(3):639-57. PubMed ID: 1373773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion intermediates of pore-forming colicins in membrane two-dimensional space.
    Zakharov SD; Cramer WA
    Biochimie; 2002; 84(5-6):465-75. PubMed ID: 12423790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function of the channel-forming colicins.
    Cramer WA; Heymann JB; Schendel SL; Deriy BN; Cohen FS; Elkins PA; Stauffacher CV
    Annu Rev Biophys Biomol Struct; 1995; 24():611-41. PubMed ID: 7545041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia.
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2008 Dec; 132(6):693-707. PubMed ID: 19029376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain.
    White D; Musse AA; Wang J; London E; Merrill AR
    J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colicin A immunity protein interacts with the hydrophobic helical hairpin of the colicin A channel domain in the Escherichia coli inner membrane.
    Nardi A; Corda Y; Baty D; Duché D
    J Bacteriol; 2001 Nov; 183(22):6721-5. PubMed ID: 11673448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.