These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20942252)

  • 1. Choosing autonomy modes for multirobot search.
    Lewis M; Wang H; Chien SY; Velagapudi P; Scerri P; Sycara K
    Hum Factors; 2010 Apr; 52(2):225-33. PubMed ID: 20942252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of two adjustable-autonomy models on the scalability of single-human/multiple-robot teams for exploration missions.
    Valero-Gomez A; de la Puente P; Hernando M
    Hum Factors; 2011 Dec; 53(6):703-16. PubMed ID: 22235531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervisory control of multiple robots: effects of imperfect automation and individual differences.
    Chen JY; Barnes MJ
    Hum Factors; 2012 Apr; 54(2):157-74. PubMed ID: 22624284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic, scalable and decentralized fault detection for robot swarms.
    Tarapore D; Christensen AL; Timmis J
    PLoS One; 2017; 12(8):e0182058. PubMed ID: 28806756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling robots in the home: Factors that affect the performance of novice robot operators.
    McGinn C; Sena A; Kelly K
    Appl Ergon; 2017 Nov; 65():23-32. PubMed ID: 28802443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervisory control of multiple robots in dynamic tasking environments.
    Chen JY; Barnes MJ
    Ergonomics; 2012; 55(9):1043-58. PubMed ID: 22676776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance.
    Wright JL; Chen JYC; Barnes MJ
    Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flooding algorithm for multirobot exploration.
    Cabrera-Mora F; Xiao J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):850-63. PubMed ID: 22275717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of automation and task load on task switching during human supervision of multiple semi-autonomous robots in a dynamic environment.
    Squire PN; Parasuraman R
    Ergonomics; 2010 Aug; 53(8):951-61. PubMed ID: 20658389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.
    Fang B; Chen L; Wang H; Dai S; Zhong Q
    ScientificWorldJournal; 2014; 2014():864180. PubMed ID: 25152925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multirobot Person Search System for Finding Multiple Dynamic Users in Human-Centered Environments.
    Mohamed SC; Fung A; Nejat G
    IEEE Trans Cybern; 2023 Jan; 53(1):628-640. PubMed ID: 35486565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of a brain-based adaptive system and a manual adaptable system for invoking automation.
    Bailey NR; Scerbo MW; Freeman FG; Mikulka PJ; Scott LA
    Hum Factors; 2006; 48(4):693-709. PubMed ID: 17240718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative Robots to Observe Moving Targets: Review.
    Khan A; Rinner B; Cavallaro A
    IEEE Trans Cybern; 2018 Jan; 48(1):187-198. PubMed ID: 27925600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Modeling and Simulation to Predict Operator Performance and Automation-Induced Complacency With Robotic Automation: A Case Study and Empirical Validation.
    Wickens CD; Sebok A; Li H; Sarter N; Gacy AM
    Hum Factors; 2015 Sep; 57(6):959-75. PubMed ID: 25850111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the effectiveness of human-robot teaming with a closed-loop system.
    Teo G; Reinerman-Jones L; Matthews G; Szalma J; Jentsch F; Hancock P
    Appl Ergon; 2018 Feb; 67():91-103. PubMed ID: 29122205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task partitioning in a robot swarm: object retrieval as a sequence of subtasks with direct object transfer.
    Pini G; Brutschy A; Scheidler A; Dorigo M; Birattari M
    Artif Life; 2014; 20(3):291-317. PubMed ID: 24730767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network approach to dynamic task assignment of multirobots.
    Zhu A; Yang SX
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1278-87. PubMed ID: 17001987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of imperfect automation and individual differences on concurrent performance of military and robotics tasks in a simulated multitasking environment.
    Chen JY; Terrence PI
    Ergonomics; 2009 Aug; 52(8):907-20. PubMed ID: 19629806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Here to Autonomy.
    Endsley MR
    Hum Factors; 2017 Feb; 59(1):5-27. PubMed ID: 28146676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.
    McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R
    Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.