These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20942428)

  • 1. Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions.
    Tu CH; Wang HL; Wang XL
    Langmuir; 2010 Nov; 26(22):17656-64. PubMed ID: 20942428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energies of the ion equilibrium partition of KCl into nanofiltration membranes based on transmembrane electrical potential and rejection.
    Tu CH; Fang YY; Zhu J; Van der Bruggen B; Wang XL
    Langmuir; 2011 Aug; 27(16):10274-81. PubMed ID: 21728362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters.
    CaƱas A; Benavente J
    J Colloid Interface Sci; 2002 Feb; 246(2):328-34. PubMed ID: 16290419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of landfill leachates by nanofiltration.
    Chaudhari LB; Murthy ZV
    J Environ Manage; 2010 May; 91(5):1209-17. PubMed ID: 20149518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.
    Bian L; Fang Y; Wang X
    Membranes (Basel); 2014 Jun; 4(2):275-86. PubMed ID: 24957177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of furfural from monosaccharides by nanofiltration.
    Qi B; Luo J; Chen X; Hang X; Wan Y
    Bioresour Technol; 2011 Jul; 102(14):7111-8. PubMed ID: 21570829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration).
    de Lint WB; Biesheuvel PM; Verweij H
    J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric spectroscopy of a nanofiltration membranes-electrolyte solution system: I. Low-frequency dielectric relaxation from the counterion polarization in pores and model development.
    Lu Q; Zhao K
    J Phys Chem B; 2010 Dec; 114(50):16783-91. PubMed ID: 21090732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The negative rejection of H+ in NF of carbonate solution and its influences on membrane performance.
    Zhu A; Long F; Wang X; Zhu W; Ma J
    Chemosphere; 2007 Apr; 67(8):1558-65. PubMed ID: 17250866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores.
    Fievet P; Szymczyk A; Labbez C; Aoubiza B; Simon C; Foissy A; Pagetti J
    J Colloid Interface Sci; 2001 Mar; 235(2):383-390. PubMed ID: 11254318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of proton concentration on membrane potential across a weak amphoteric polymer membrane.
    Uematsu I; Jimbo T; Tanioka A
    J Colloid Interface Sci; 2002 Jan; 245(2):319-24. PubMed ID: 16290366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation.
    Gjelstad A; Rasmussen KE; Pedersen-Bjergaard S
    J Chromatogr A; 2007 Dec; 1174(1-2):104-11. PubMed ID: 17850807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of steric, electric, and dielectric effects on membrane potential.
    Lanteri Y; Szymczyk A; Fievet P
    Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics.
    Bason S; Kaufman Y; Freger V
    J Phys Chem B; 2010 Mar; 114(10):3510-7. PubMed ID: 20170142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.