BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20942439)

  • 1. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group.
    Balashov SP; Imasheva ES; Choi AR; Jung KH; Liaaen-Jensen S; Lanyi JK
    Biochemistry; 2010 Nov; 49(45):9792-9. PubMed ID: 20942439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.
    Imasheva ES; Balashov SP; Choi AR; Jung KH; Lanyi JK
    Biochemistry; 2009 Nov; 48(46):10948-55. PubMed ID: 19842712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin.
    Imasheva ES; Balashov SP; Wang JM; Lanyi JK
    J Membr Biol; 2011 Jan; 239(1-2):95-104. PubMed ID: 21104180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal β-ionone ring-salinixanthin interactions in xanthorhodopsin: a study using artificial pigments.
    Smolensky Koganov E; Hirshfeld A; Sheves M
    Biochemistry; 2013 Feb; 52(7):1290-301. PubMed ID: 23331279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.
    Iyer ES; Gdor I; Eliash T; Sheves M; Ruhman S
    J Phys Chem B; 2015 Feb; 119(6):2345-9. PubMed ID: 25144664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin.
    Balashov SP; Imasheva ES; Lanyi JK
    Biochemistry; 2006 Sep; 45(36):10998-1004. PubMed ID: 16953586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling.
    Jana S; Jung KH; Sheves M
    Sci Rep; 2020 Aug; 10(1):13992. PubMed ID: 32814821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin.
    Polívka T; Balashov SP; Chábera P; Imasheva ES; Yartsev A; Sundström V; Lanyi JK
    Biophys J; 2009 Mar; 96(6):2268-77. PubMed ID: 19289053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
    Balashov SP; Imasheva ES; Wang JM; Lanyi JK
    Biophys J; 2008 Sep; 95(5):2402-14. PubMed ID: 18515390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna.
    Lanyi JK; Balashov SP
    Biochim Biophys Acta; 2008; 1777(7-8):684-8. PubMed ID: 18515067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin.
    Misra R; Eliash T; Sudo Y; Sheves M
    J Phys Chem B; 2019 Jan; 123(1):10-20. PubMed ID: 30525616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system.
    Chuon K; Shim JG; Kim SH; Cho SG; Meas S; Kang KW; Kim JH; Das I; Sheves M; Jung KH
    J Photochem Photobiol B; 2021 Aug; 221():112241. PubMed ID: 34130090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na
    Anashkin VA; Bertsova YV; Mamedov AM; Mamedov MD; Arutyunyan AM; Baykov AA; Bogachev AV
    Photosynth Res; 2018 May; 136(2):161-169. PubMed ID: 28983723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.
    Bertsova YV; Arutyunyan AM; Bogachev AV
    Biochemistry (Mosc); 2016 Apr; 81(4):414-9. PubMed ID: 27293099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal Binding to Apo-Gloeobacter Rhodopsin: The Role of pH and Retinal-Carotenoid Interaction.
    Jana S; Eliash T; Jung KH; Sheves M
    J Phys Chem B; 2017 Dec; 121(48):10759-10769. PubMed ID: 29111729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid binding in Gloeobacteria rhodopsin provides insights into divergent evolution of xanthorhodopsin types.
    Chuon K; Shim JG; Kang KW; Cho SG; Hour C; Meas S; Kim JH; Choi A; Jung KH
    Commun Biol; 2022 May; 5(1):512. PubMed ID: 35637261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromophore interaction in xanthorhodopsin--retinal dependence of salinixanthin binding.
    Imasheva ES; Balashov SP; Wang JM; Smolensky E; Sheves M; Lanyi JK
    Photochem Photobiol; 2008; 84(4):977-84. PubMed ID: 18399915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.
    Balashov SP; Imasheva ES; Boichenko VA; Antón J; Wang JM; Lanyi JK
    Science; 2005 Sep; 309(5743):2061-4. PubMed ID: 16179480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.
    Ghosh M; Misra R; Bhattacharya S; Majhi K; Jung KH; Sheves M
    J Phys Chem B; 2023 Mar; 127(10):2128-2137. PubMed ID: 36857147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating excited state dynamics of salinixanthin and xanthorhodopsin in the near-infrared.
    Gdor I; Zhu J; Loevsky B; Smolensky E; Friedman N; Sheves M; Ruhman S
    Phys Chem Chem Phys; 2011 Mar; 13(9):3782-7. PubMed ID: 21183996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.