These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20942496)
1. New insights in the electrocatalytic proton reduction and hydrogen oxidation by bioinspired catalysts: a DFT investigation. Kachmar A; Vetere V; Maldivi P; Franco AA J Phys Chem A; 2010 Nov; 114(43):11861-7. PubMed ID: 20942496 [TBL] [Abstract][Full Text] [Related]
2. Comment on "New insights in the electrocatalytic proton reduction and hydrogen oxidation by bioinspired catalysts: a DFT investigation". Dupuis M; Chen S; Raugei S; DuBois DL; Bullock RM J Phys Chem A; 2011 May; 115(18):4861-5. PubMed ID: 21504191 [TBL] [Abstract][Full Text] [Related]
3. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478 [TBL] [Abstract][Full Text] [Related]
4. Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies. Canaguier S; Vaccaro L; Artero V; Ostermann R; Pécaut J; Field MJ; Fontecave M Chemistry; 2009 Sep; 15(37):9350-64. PubMed ID: 19670195 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
6. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a functional model for hydrogenases. Curtis CJ; Miedaner A; Ciancanelli R; Ellis WW; Noll BC; Rakowski DuBois M; DuBois DL Inorg Chem; 2003 Jan; 42(1):216-27. PubMed ID: 12513098 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound. Vaccaro L; Artero V; Canaguier S; Fontecave M; Field MJ Dalton Trans; 2010 Mar; 39(12):3043-9. PubMed ID: 20221538 [TBL] [Abstract][Full Text] [Related]
8. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
9. Proton delivery and removal in [Ni(P(R)2N(R')2)2]2+ hydrogen production and oxidation catalysts. O'Hagan M; Ho MH; Yang JY; Appel AM; Rakowski DuBois M; Raugei S; Shaw WJ; DuBois DL; Bullock RM J Am Chem Soc; 2012 Nov; 134(47):19409-24. PubMed ID: 23072436 [TBL] [Abstract][Full Text] [Related]
10. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Wilson AD; Shoemaker RK; Miedaner A; Muckerman JT; DuBois DL; DuBois MR Proc Natl Acad Sci U S A; 2007 Apr; 104(17):6951-6. PubMed ID: 17360385 [TBL] [Abstract][Full Text] [Related]
11. Insights into the mechanism of electrocatalytic hydrogen evolution mediated by Fe2(S2C3H6)(CO)6: the simplest functional model of the Fe-hydrogenase active site. Greco C; Zampella G; Bertini L; Bruschi M; Fantucci P; De Gioia L Inorg Chem; 2007 Jan; 46(1):108-16. PubMed ID: 17198418 [TBL] [Abstract][Full Text] [Related]
12. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
13. An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition. Lill SO; Siegbahn PE Biochemistry; 2009 Feb; 48(5):1056-66. PubMed ID: 19138102 [TBL] [Abstract][Full Text] [Related]
14. Water splitting goes au naturel. Alper J Science; 2003 Mar; 299(5613):1686-7. PubMed ID: 12637732 [No Abstract] [Full Text] [Related]
15. Biomimetic model featuring the NH proton and bridging hydride related to a proposed intermediate in enzymatic H(2) production by Fe-only hydrogenase. Chiang MH; Liu YC; Yang ST; Lee GH Inorg Chem; 2009 Aug; 48(16):7604-12. PubMed ID: 19601586 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts. Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265 [TBL] [Abstract][Full Text] [Related]
17. Electronic structure of a binuclear nickel complex of relevance to [NiFe] hydrogenase. van Gastel M; Shaw JL; Blake AJ; Flores M; Schröder M; McMaster J; Lubitz W Inorg Chem; 2008 Dec; 47(24):11688-97. PubMed ID: 18998627 [TBL] [Abstract][Full Text] [Related]
18. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Baffert C; Artero V; Fontecave M Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760 [TBL] [Abstract][Full Text] [Related]
19. Homogeneous Ni catalysts for H2 oxidation and production: an assessment of theoretical methods, from density functional theory to post Hartree-Fock correlated wave-function theory. Chen S; Raugei S; Rousseau R; Dupuis M; Bullock RM J Phys Chem A; 2010 Dec; 114(48):12716-24. PubMed ID: 21070021 [TBL] [Abstract][Full Text] [Related]
20. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: dependence of the core geometry on electrocatalytic proton reduction. Cheah MH; Borg SJ; Best SP Inorg Chem; 2007 Mar; 46(5):1741-50. PubMed ID: 17256930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]