These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 20942498)
1. Assessing the performance of density functional theory for the electronic structure of metal-salens: the M06 suite of functionals and the d⁴-metals. Takatani T; Sears JS; Sherrill CD J Phys Chem A; 2010 Nov; 114(43):11714-8. PubMed ID: 20942498 [TBL] [Abstract][Full Text] [Related]
2. Assessing the performance of density functional theory for the electronic structure of metal-salens: the d6-metals. Takatani T; Sears JS; Sherrill CD J Phys Chem A; 2009 Aug; 113(32):9231-6. PubMed ID: 19621915 [TBL] [Abstract][Full Text] [Related]
3. Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. Duboc C; Ganyushin D; Sivalingam K; Collomb MN; Neese F J Phys Chem A; 2010 Oct; 114(39):10750-8. PubMed ID: 20828179 [TBL] [Abstract][Full Text] [Related]
4. Assessing the performance of density functional theory for the electronic structure of metal-salens: the d2-metals. Sears JS; Sherrill CD J Phys Chem A; 2008 Jul; 112(29):6741-52. PubMed ID: 18593130 [TBL] [Abstract][Full Text] [Related]
5. The electronic structure of oxo-Mn(salen): single-reference and multireference approaches. Sears JS; Sherrill CD J Chem Phys; 2006 Apr; 124(14):144314. PubMed ID: 16626203 [TBL] [Abstract][Full Text] [Related]
6. Controlling electron transfer through the manipulation of structure and ligand-based torsional motions: a computational exploration of ruthenium donor-acceptor systems using density functional theory. Meylemans HA; Damrauer NH Inorg Chem; 2009 Dec; 48(23):11161-75. PubMed ID: 19856899 [TBL] [Abstract][Full Text] [Related]
7. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections. Khvostichenko D; Choi A; Boulatov R J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545 [TBL] [Abstract][Full Text] [Related]
8. DFT calculations on the spin-crossover complex Fe(salen)(NO): a quest for the best functional. Conradie J; Ghosh A J Phys Chem B; 2007 Nov; 111(44):12621-4. PubMed ID: 17935317 [TBL] [Abstract][Full Text] [Related]
9. Assessing the performance of density functional theory for the electronic structure of metal-salens: the 3d(0)-metals. Sears JS; Sherrill CD J Phys Chem A; 2008 Apr; 112(15):3466-77. PubMed ID: 18338876 [TBL] [Abstract][Full Text] [Related]
10. Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Pierloot K; Vancoillie S J Chem Phys; 2008 Jan; 128(3):034104. PubMed ID: 18205485 [TBL] [Abstract][Full Text] [Related]
11. Comparison of electronic structures and light-induced excited spin state trapping between [Fe(2-picolylamine)(3)](2+) and its iron(III) analogue. Ando H; Nakao Y; Sato H; Sakaki S Dalton Trans; 2010 Feb; 39(7):1836-45. PubMed ID: 20449430 [TBL] [Abstract][Full Text] [Related]
12. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: geometry optimization and spin-state energetics of a ruthenium nitrosyl complex. Delcey MG; Freitag L; Pedersen TB; Aquilante F; Lindh R; González L J Chem Phys; 2014 May; 140(17):174103. PubMed ID: 24811621 [TBL] [Abstract][Full Text] [Related]
13. Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+. Fouqueau A; Casida ME; Lawson Daku LM; Hauser A; Neese F J Chem Phys; 2005 Jan; 122(4):44110. PubMed ID: 15740238 [TBL] [Abstract][Full Text] [Related]
14. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates. Gonzalez E; Brothers PJ; Ghosh A J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402 [TBL] [Abstract][Full Text] [Related]
15. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
16. The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Minenkov Y; Singstad A; Occhipinti G; Jensen VR Dalton Trans; 2012 May; 41(18):5526-41. PubMed ID: 22430848 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate-aromatic pi interactions: a test of density functionals and the DFT-D method. Raju RK; Ramraj A; Hillier IH; Vincent MA; Burton NA Phys Chem Chem Phys; 2009 May; 11(18):3411-6. PubMed ID: 19421542 [TBL] [Abstract][Full Text] [Related]
18. On the performance of local, semilocal, and nonlocal exchange-correlation functionals on transition metal molecules. Ramírez-Solís A J Chem Phys; 2007 Jun; 126(22):224105. PubMed ID: 17581042 [TBL] [Abstract][Full Text] [Related]
19. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective. Ali ME; Sanyal B; Oppeneer PM J Phys Chem B; 2012 May; 116(20):5849-59. PubMed ID: 22512398 [TBL] [Abstract][Full Text] [Related]
20. A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. Zein S; Duboc C; Lubitz W; Neese F Inorg Chem; 2008 Jan; 47(1):134-42. PubMed ID: 18072763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]