These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20942501)

  • 1. Computational investigation of reactive to nonreactive capture of carbon dioxide by oxygen-containing Lewis bases.
    Teague CM; Dai S; Jiang DE
    J Phys Chem A; 2010 Nov; 114(43):11761-7. PubMed ID: 20942501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide capture by aminoalkyl imidazolium-based ionic liquid: a computational investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Phys Chem Chem Phys; 2012 Apr; 14(13):4589-96. PubMed ID: 22358056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant improvements in CO₂ capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions.
    Luo X; Guo Y; Ding F; Zhao H; Cui G; Li H; Wang C
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7053-7. PubMed ID: 24899207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference for SO2 and CO2 in TGML ionic liquids: a theoretical investigation.
    Wang Y; Wang C; Zhang L; Li H
    Phys Chem Chem Phys; 2008 Oct; 10(39):5976-82. PubMed ID: 18825285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion.
    Babarao R; Dai S; Jiang DE
    J Phys Chem B; 2011 Aug; 115(32):9789-94. PubMed ID: 21721541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H∙∙∙O hydrogen bonding interaction strengthened by the anion.
    Ding F; He X; Luo X; Lin W; Chen K; Li H; Wang C
    Chem Commun (Camb); 2014 Dec; 50(95):15041-4. PubMed ID: 25328002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.
    Pan M; Cao N; Lin W; Luo X; Chen K; Che S; Li H; Wang C
    ChemSusChem; 2016 Sep; 9(17):2351-7. PubMed ID: 27458723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of azole anions with CO₂ from the DFT perspective.
    Tang H; Wu C
    ChemSusChem; 2013 Jun; 6(6):1050-6. PubMed ID: 23640877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational comparison of the reactions of substituted amines with CO(2).
    Mindrup EM; Schneider WF
    ChemSusChem; 2010 Aug; 3(8):931-8. PubMed ID: 20677205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights from quantum chemistry into piperazine-based ionic liquids and their behavior with regard to CO₂.
    Sanz V; Alcalde R; Atilhan M; Aparicio S
    J Mol Model; 2014 Mar; 20(3):2107. PubMed ID: 24535108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing anion-cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study.
    Guo J; Zhang D; Duan C; Liu C
    Carbohydr Res; 2010 Oct; 345(15):2201-5. PubMed ID: 20832777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations.
    Prasad BR; Senapati S
    J Phys Chem B; 2009 Apr; 113(14):4739-43. PubMed ID: 19281169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling interactions between lignocellulose and ionic liquids using DFT-D.
    Janesko BG
    Phys Chem Chem Phys; 2011 Jun; 13(23):11393-401. PubMed ID: 21455515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled inverted micelles stabilize ionic liquid domains in supercritical CO2.
    Chandran A; Prakash K; Senapati S
    J Am Chem Soc; 2010 Sep; 132(35):12511-6. PubMed ID: 20707337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation.
    Berkovic AM; Gonzalez MC; Russo N; Michelini Mdel C; Pis Diez R; Mártire DO
    J Phys Chem A; 2010 Dec; 114(49):12845-50. PubMed ID: 21086971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CO(2) capture by porous, nitrogen-doped carbonaceous adsorbents derived from task-specific ionic liquids.
    Zhu X; Hillesheim PC; Mahurin SM; Wang C; Tian C; Brown S; Luo H; Veith GM; Han KS; Hagaman EW; Liu H; Dai S
    ChemSusChem; 2012 Oct; 5(10):1912-7. PubMed ID: 22907832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO(2).
    Seki T; Grunwaldt JD; Baiker A
    J Phys Chem B; 2009 Jan; 113(1):114-22. PubMed ID: 19067550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil.
    Modelli A; Sali A; Galletti P; Samorì C
    Chemosphere; 2008 Nov; 73(8):1322-7. PubMed ID: 18715611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substituent effect on the interaction of aromatic primary amines and diamines with supercritical CO(2) from infrared spectroscopy and quantum calculations.
    Farbos B; Tassaing T
    Phys Chem Chem Phys; 2009 Jul; 11(25):5052-61. PubMed ID: 19562135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.