These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 20942544)

  • 1. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid.
    Torabi K; Corti DS
    J Chem Phys; 2010 Oct; 133(13):134505. PubMed ID: 20942544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous nucleation and growth in simple fluids. I. Fundamental issues and free energy surfaces of bubble and droplet formation.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174511. PubMed ID: 21054055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated instability of homogeneous droplet nucleation and growth.
    Uline MJ; Corti DS
    J Chem Phys; 2008 Dec; 129(23):234507. PubMed ID: 19102538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous nucleation and growth in simple fluids. II. Scaling behavior, instabilities, and the (n,v) order parameter.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174512. PubMed ID: 21054056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical cavity in the stretched fluid studied using square-gradient density-functional model with triple-parabolic free energy.
    Iwamatsu M
    J Chem Phys; 2009 Apr; 130(16):164512. PubMed ID: 19405599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a molecular theory of homogeneous bubble nucleation: I. Equilibrium embryo definition.
    Torabi K; Corti DS
    J Phys Chem B; 2013 Oct; 117(41):12479-90. PubMed ID: 24020874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated instability of homogeneous bubble nucleation and growth.
    Uline MJ; Corti DS
    Phys Rev Lett; 2007 Aug; 99(7):076102. PubMed ID: 17930907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical cavities and the kinetic spinodal for superheated liquids.
    Punnathanam S; Corti DS
    J Chem Phys; 2004 Jun; 120(24):11658-61. PubMed ID: 15268200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. II. Simulation results.
    Uline MJ; Corti DS
    J Chem Phys; 2005 Oct; 123(16):164102. PubMed ID: 16268676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The free energy of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2007 Oct; 127(15):154505. PubMed ID: 17949171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid-vapor interface.
    Goujon F; Malfreyt P; Simon JM; Boutin A; Rousseau B; Fuchs AH
    J Chem Phys; 2004 Dec; 121(24):12559-71. PubMed ID: 15606277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble.
    Eslami H; Mozaffari F; Moghadasi J; Müller-Plathe F
    J Chem Phys; 2008 Nov; 129(19):194702. PubMed ID: 19026076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation study of the global phase behavior of linear rigid Lennard-Jones chain molecules: comparison with flexible models.
    Galindo A; Vega C; Sanz E; MacDowell LG; de Miguel E; Blas FJ
    J Chem Phys; 2004 Feb; 120(8):3957-68. PubMed ID: 15268561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the simple weighted density approximation for a hard-sphere fluid to a Lennard-Jones fluid II. Application.
    Zhou S
    J Colloid Interface Sci; 2005 Oct; 290(2):364-72. PubMed ID: 15935364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The birth of a bubble: a molecular simulation study.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 Feb; 122(5):54707. PubMed ID: 15740346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.