These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium. Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770 [TBL] [Abstract][Full Text] [Related]
3. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. Menning CA; Hwu HH; Chen JG J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures. Menning CA; Chen JG J Chem Phys; 2008 Apr; 128(16):164703. PubMed ID: 18447475 [TBL] [Abstract][Full Text] [Related]
5. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
6. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core. Mednikov EG; Jewell MC; Dahl LF J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929 [TBL] [Abstract][Full Text] [Related]
7. Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study. Gu Z; Balbuena PB J Phys Chem A; 2006 Aug; 110(32):9783-7. PubMed ID: 16898677 [TBL] [Abstract][Full Text] [Related]
8. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874 [TBL] [Abstract][Full Text] [Related]
9. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Tang W; Henkelman G J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840 [TBL] [Abstract][Full Text] [Related]
10. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957 [TBL] [Abstract][Full Text] [Related]
11. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Gong K; Su D; Adzic RR J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798 [TBL] [Abstract][Full Text] [Related]
12. Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy. Zhou WP; Yang X; Vukmirovic MB; Koel BE; Jiao J; Peng G; Mavrikakis M; Adzic RR J Am Chem Soc; 2009 Sep; 131(35):12755-62. PubMed ID: 19722720 [TBL] [Abstract][Full Text] [Related]
13. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004 [TBL] [Abstract][Full Text] [Related]
14. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles. Kim CE; Lim DH; Jang JH; Kim HJ; Yoon SP; Han J; Nam SW; Hong SA; Soon A; Ham HC J Chem Phys; 2015 Jan; 142(3):034707. PubMed ID: 25612725 [TBL] [Abstract][Full Text] [Related]
17. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Hansen HA; Rossmeisl J; Nørskov JK Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233 [TBL] [Abstract][Full Text] [Related]
18. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen. Kieken LD; Neurock M; Mei D J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study of carbon species on Pd(111): competition between migration of C atoms to the subsurface interlayer and formation of Cn clusters on the surface. Kozlov SM; Yudanov IV; Aleksandrov HA; Rösch N Phys Chem Chem Phys; 2009 Dec; 11(46):10955-63. PubMed ID: 19924331 [TBL] [Abstract][Full Text] [Related]