These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20942568)

  • 61. Direct 1270 nm irradiation as an alternative to photosensitized generation of singlet oxygen to induce cell death.
    Detty MR
    Photochem Photobiol; 2012; 88(1):2-4. PubMed ID: 22091977
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.
    Wu Y; Zhang Z; Ombrello TM
    Opt Lett; 2013 Jul; 38(13):2286-8. PubMed ID: 23811904
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-Photon Excitation of Neat Aerated Solvents with Visible Light Produces Singlet Oxygen.
    Bregnhøj M; Ogilby PR
    J Phys Chem A; 2019 Sep; 123(35):7567-7575. PubMed ID: 31402661
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Near-infrared two-photon excitation of protoporphyrin IX: photodynamics and photoproduct generation.
    Goyan RL; Cramb DT
    Photochem Photobiol; 2000 Dec; 72(6):821-7. PubMed ID: 11140272
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Singlet oxygen emission at 1270 nm in protoporphyrin solution excited by argon laser.
    Torinuki W; Miura T
    Tohoku J Exp Med; 1983 Jul; 140(3):297-9. PubMed ID: 6623460
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Observation of Singlet Oxygen with Single-Molecule Photosensitization by Time-Dependent Photon Statistics.
    Li Y; Chen R; Zhou H; Shi Y; Qin C; Gao Y; Zhang G; Gao Y; Xiao L; Jia S
    J Phys Chem Lett; 2018 Sep; 9(18):5207-5212. PubMed ID: 30122039
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new chemical approach for proximity labelling of chromatin-associated RNAs and proteins with visible light irradiation.
    Li L; Liang J; Luo H; Tam KM; Tse ECM; Li Y
    Chem Commun (Camb); 2019 Oct; 55(82):12340-12343. PubMed ID: 31556887
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simulation of thermal field distribution in biological tissue and cell culture media irradiated with infrared wavelengths.
    Dremin V; Novikova I; Rafailov E
    Opt Express; 2022 Jun; 30(13):23078-23089. PubMed ID: 36224995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Elimination of the effects of stray light in measurements by total internal reflection aqueous fluorescence (TIRAF).
    Gingell D; Heavens O
    J Microsc; 1996 May; 182(Pt 2):141-8. PubMed ID: 8683561
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Correction: A facile strategy to realize a single/double photon excitation-dependent photosensitizer for imaging-guided phototherapy against HeLa cancer cells at separate irradiation channels.
    Kong L; Huang Z; Zhang SS; Song J; Zhang YY; Bai XY; Yang JX; Li L
    Chem Commun (Camb); 2020 Feb; 56(12):1899. PubMed ID: 32016277
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biological Assessment of Laser-Synthesized Silicon Nanoparticles Effect in Two-Photon Photodynamic Therapy on Breast Cancer MCF-7 Cells.
    Al-Kattan A; M A Ali L; Daurat M; Mattana E; Gary-Bobo M
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32722568
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cell Death Mechanisms Induced by Photo-Oxidation Studied at the Cell Scale in the Yeast
    Grangeteau C; Lepinois F; Winckler P; Perrier-Cornet JM; Dupont S; Beney L
    Front Microbiol; 2018; 9():2640. PubMed ID: 30455675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single cell responses to spatially controlled photosensitized production of extracellular singlet oxygen.
    Pedersen BW; Sinks LE; Breitenbach T; Schack NB; Vinogradov SA; Ogilby PR
    Photochem Photobiol; 2011; 87(5):1077-91. PubMed ID: 21668871
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen.
    Liu B; Farrell TJ; Patterson MS
    Phys Med Biol; 2010 Oct; 55(19):5913-32. PubMed ID: 20844331
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level.
    Blázquez-Castro A; Breitenbach T; Ogilby PR
    Photochem Photobiol Sci; 2014 Sep; 13(9):1235-40. PubMed ID: 25051122
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Two-photon singlet oxygen microscopy: the challenges of working with single cells.
    Skovsen E; Snyder JW; Ogilby PR
    Photochem Photobiol; 2006; 82(5):1187-97. PubMed ID: 16706601
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two-photon irradiation of an intracellular singlet oxygen photosensitizer: achieving localized sub-cellular excitation in spatially-resolved experiments.
    Pedersen BW; Breitenbach T; Redmond RW; Ogilby PR
    Free Radic Res; 2010 Dec; 44(12):1383-97. PubMed ID: 20942568
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spatially resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: correlating cell response to the site of localized irradiation.
    Gollmer A; Besostri F; Breitenbach T; Ogilby PR
    Free Radic Res; 2013 Sep; 47(9):718-30. PubMed ID: 23786160
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.