These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20942643)

  • 1. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions.
    Branco P; Stomp M; Egas M; Huisman J
    Am Nat; 2010 Dec; 176(6):E162-76. PubMed ID: 20942643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Do Phytoplankton Evolve Large Size in Response to Grazing?
    Branco P; Egas M; Hall SR; Huisman J
    Am Nat; 2020 Jan; 195(1):E20-E37. PubMed ID: 31868537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of the evolution of stoichiometry-related traits on population dynamics in plankton communities.
    Mizuno AN; Kawata M
    J Theor Biol; 2009 Jul; 259(2):209-18. PubMed ID: 19298828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient enrichment and food chains: can evolution buffer top-down control?
    Loeuille N; Loreau M
    Theor Popul Biol; 2004 May; 65(3):285-98. PubMed ID: 15066424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of specialization and ecological character displacement of herbivores along a gradient of plant quality.
    Egas M; Sabelis MW; Dieckmann U
    Evolution; 2005 Mar; 59(3):507-20. PubMed ID: 15856694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can the evolution of plant defense lead to plant-herbivore mutualism?
    de Mazancourt C; Loreau M; Dieckmann U
    Am Nat; 2001 Aug; 158(2):109-23. PubMed ID: 18707340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inedible producers in food webs: controls on stoichiometric food quality and composition of grazers.
    Hall SR; Leibold MA; Lytle DA; Smith VH
    Am Nat; 2006 May; 167(5):628-37. PubMed ID: 16671008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbivore-induced coexistence of competing plant species.
    Ishii R; Crawley MJ
    J Theor Biol; 2011 Jan; 268(1):50-61. PubMed ID: 20692270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution of phytoplankton cell size.
    Jiang L; Schofield OM; Falkowski PG
    Am Nat; 2005 Oct; 166(4):496-505. PubMed ID: 16224705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems.
    Diehl S
    Am Nat; 2007 Jun; 169(6):E173-91. PubMed ID: 17479457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants.
    O'Connor MI; Gilbert B; Brown CJ
    Am Nat; 2011 Nov; 178(5):626-38. PubMed ID: 22030732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Habitat connectivity and ecosystem productivity: implications from a simple model.
    Cloern JE
    Am Nat; 2007 Jan; 169(1):E21-33. PubMed ID: 17206578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional constraints in terrestrial and freshwater food webs.
    Elser JJ; Fagan WF; Denno RF; Dobberfuhl DR; Folarin A; Huberty A; Interlandi S; Kilham SS; McCauley E; Schulz KL; Siemann EH; Sterner RW
    Nature; 2000 Nov; 408(6812):578-80. PubMed ID: 11117743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometrically explicit competition between grazers: species replacement, coexistence, and priority effects along resource supply gradients.
    Hall SR
    Am Nat; 2004 Aug; 164(2):157-72. PubMed ID: 15278841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure.
    Egas M; Dieckmann U; Sabelis MW
    Am Nat; 2004 Apr; 163(4):518-31. PubMed ID: 15122500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems.
    Hillebrand H; Borer ET; Bracken ME; Cardinale BJ; Cebrian J; Cleland EE; Elser JJ; Gruner DS; Harpole WS; Ngai JT; Sandin S; Seabloom EW; Shurin JB; Smith JE; Smith MD
    Ecol Lett; 2009 Jun; 12(6):516-27. PubMed ID: 19392711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-Evolutionary Dynamics of Ecological Stoichiometry in Plankton Communities.
    Branco P; Egas M; Elser JJ; Huisman J
    Am Nat; 2018 Jul; 192(1):E1-E20. PubMed ID: 29897797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels.
    Verspagen JM; Van de Waal DB; Finke JF; Visser PM; Huisman J
    Ecol Lett; 2014 Aug; 17(8):951-60. PubMed ID: 24813339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling.
    Morozov AY
    J Theor Biol; 2010 Jul; 265(1):45-54. PubMed ID: 20406647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level.
    Litchman E; Klausmeier CA; Schofield OM; Falkowski PG
    Ecol Lett; 2007 Dec; 10(12):1170-81. PubMed ID: 17927770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.