BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20942836)

  • 21. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK; Wright DW; Kenway OA; Coveney PV
    J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bridge water mediates nevirapine binding to wild type and Y181C HIV-1 reverse transcriptase--evidence from molecular dynamics simulations and MM-PBSA calculations.
    Treesuwan W; Hannongbua S
    J Mol Graph Model; 2009; 27(8):921-9. PubMed ID: 19414275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    Pérez C; Pastor M; Ortiz AR; Gago F
    J Med Chem; 1998 Mar; 41(6):836-52. PubMed ID: 9526559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS.
    Zhou Z; Madura JD
    Proteins; 2004 Nov; 57(3):493-503. PubMed ID: 15382241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N.
    Vorontsov II; Miyashita O
    J Comput Chem; 2011 Apr; 32(6):1043-53. PubMed ID: 20949512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting binding modes from free energy calculations.
    Nervall M; Hanspers P; Carlsson J; Boukharta L; Aqvist J
    J Med Chem; 2008 May; 51(9):2657-67. PubMed ID: 18410080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of the three dimensional model of plasmepsin II-peptidic inhibitor complexes.
    Pranav Kumar SK; Kulkarni VM
    Drug Des Discov; 2001; 17(4):293-313. PubMed ID: 11765133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations.
    Cheng Y; Li D; Ji B; Shi X; Gao H
    J Mol Graph Model; 2010 Sep; 29(2):171-7. PubMed ID: 20580296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors.
    Li D; Liu MS; Ji B; Hwang K; Huang Y
    J Chem Phys; 2009 Jun; 130(21):215102. PubMed ID: 19508101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical studies of HIV-1 reverse transcriptase inhibition.
    Świderek K; Martí S; Moliner V
    Phys Chem Chem Phys; 2012 Sep; 14(36):12614-24. PubMed ID: 22820901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Receptor- and ligand-based 3D-QSAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors.
    Hu R; Barbault F; Delamar M; Zhang R
    Bioorg Med Chem; 2009 Mar; 17(6):2400-9. PubMed ID: 19250835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I; Sadiq SK; Coveney PV
    J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of the binding free energies of new TIBO-like HIV-1 reverse transcriptase inhibitors using a combination of PROFEC, PB/SA, CMC/MD, and free energy calculations.
    Eriksson MA; Pitera J; Kollman PA
    J Med Chem; 1999 Mar; 42(5):868-81. PubMed ID: 10072684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex.
    Cui Q; Sulea T; Schrag JD; Munger C; Hung MN; Naïm M; Cygler M; Purisima EO
    J Mol Biol; 2008 Jun; 379(4):787-802. PubMed ID: 18479705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of antifusion peptides with HIVgp41 from molecular dynamics simulations: quantitative correlation with experiment.
    Strockbine B; Rizzo RC
    Proteins; 2007 May; 67(3):630-42. PubMed ID: 17335007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of binding affinities for TIBO inhibitors of HIV-1 reverse transcriptase using Monte Carlo simulations in a linear response method.
    Smith RH; Jorgensen WL; Tirado-Rives J; Lamb ML; Janssen PA; Michejda CJ; Kroeger Smith MB
    J Med Chem; 1998 Dec; 41(26):5272-86. PubMed ID: 9857095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods.
    Adekoya OA; Willassen NP; Sylte I
    J Struct Biol; 2006 Feb; 153(2):129-44. PubMed ID: 16376106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.