These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20942868)

  • 1. Spatial distribution of intraperitoneally administrated paclitaxel nanoparticles solubilized with poly (2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) in peritoneal metastatic nodules.
    Kamei T; Kitayama J; Yamaguchi H; Soma D; Emoto S; Konno T; Ishihara K; Ishigami H; Kaisaki S; Nagawa H
    Cancer Sci; 2011 Jan; 102(1):200-5. PubMed ID: 20942868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) for peritoneal dissemination of gastric cancer.
    Soma D; Kitayama J; Konno T; Ishihara K; Yamada J; Kamei T; Ishigami H; Kaisaki S; Nagawa H
    Cancer Sci; 2009 Oct; 100(10):1979-85. PubMed ID: 19604244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model.
    Tamura K; Kikuchi E; Konno T; Ishihara K; Matsumoto K; Miyajima A; Oya M
    BMC Cancer; 2015 Apr; 15():317. PubMed ID: 25928041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles.
    Shimada T; Ueda M; Jinno H; Chiba N; Wada M; Watanabe J; Ishihara K; Kitagawa Y
    Anticancer Res; 2009 Apr; 29(4):1009-14. PubMed ID: 19414339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel.
    Miyata R; Ueda M; Jinno H; Konno T; Ishihara K; Ando N; Kitagawa Y
    Int J Cancer; 2009 May; 124(10):2460-7. PubMed ID: 19173297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antitumor effect and pharmacokinetics of intraperitoneal NK105, a nanomicellar paclitaxel formulation for peritoneal dissemination.
    Emoto S; Yamaguchi H; Kishikawa J; Yamashita H; Ishigami H; Kitayama J
    Cancer Sci; 2012 Jul; 103(7):1304-10. PubMed ID: 22429777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis.
    Xu S; Fan H; Yin L; Zhang J; Dong A; Deng L; Tang H
    Eur J Pharm Biopharm; 2016 Jul; 104():251-9. PubMed ID: 27185379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraperitoneal paclitaxel induces regression of peritoneal metastasis partly by destruction of peripheral microvessels.
    Kitayama J; Emoto S; Yamaguchi H; Ishigami H; Watanabe T
    Cancer Chemother Pharmacol; 2014 Mar; 73(3):605-12. PubMed ID: 24464356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Penetration of Paclitaxel in Abdominal Wall of Rabbits after Hyperthermic Intraperitoneal Administration of Nab-Paclitaxel Compared to Standard Paclitaxel Formulation.
    Coccolini F; Acocella F; Morosi L; Brizzola S; Ghiringhelli M; Ceresoli M; Davoli E; Ansaloni L; D'Incalci M; Zucchetti M
    Pharm Res; 2017 Jun; 34(6):1180-1186. PubMed ID: 28247168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the antitumor activity of Nab-paclitaxel and intraperitoneal solvent-based paclitaxel regarding peritoneal metastasis in gastric cancer.
    Kinoshita J; Fushida S; Tsukada T; Oyama K; Watanabe T; Shoji M; Okamoto K; Nakanuma S; Sakai S; Makino I; Furukawa H; Hayashi H; Nakamura K; Inokuchi M; Nakagawara H; Miyashita T; Tajima H; Takamura H; Ninomiya I; Fujimura T; Masakazu Y; Hirakawa K; Ohta T
    Oncol Rep; 2014 Jul; 32(1):89-96. PubMed ID: 24859429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of an MPC-BMA co-polymer as a nanotransporter for paclitaxel.
    Wada M; Jinno H; Ueda M; Ikeda T; Kitajima M; Konno T; Watanabe J; Ishihara K
    Anticancer Res; 2007; 27(3B):1431-5. PubMed ID: 17595758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers.
    Konno T; Watanabe J; Ishihara K
    J Biomed Mater Res A; 2003 May; 65(2):209-14. PubMed ID: 12734814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal drug delivery for intraperitoneal paclitaxel (PTX) in murine model.
    Kitayama J; Ishigami H; Yamaguchi H; Yamada J; Soma D; Miyato H; Kamei T; Lefor AK; Sata N
    Pleura Peritoneum; 2017 Jun; 2(2):95-102. PubMed ID: 30911637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma.
    Liu R; Colby AH; Gilmore D; Schulz M; Zeng J; Padera RF; Shirihai O; Grinstaff MW; Colson YL
    Biomaterials; 2016 Sep; 102():175-86. PubMed ID: 27343465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of intraperitoneal chemotherapy with paclitaxel targeting peritoneal micrometastasis as revealed by GFP-tagged human gastric cancer cell lines in nude mice.
    Ohashi N; Kodera Y; Nakanishi H; Yokoyama H; Fujiwara M; Koike M; Hibi K; Nakao A; Tatematsu M
    Int J Oncol; 2005 Sep; 27(3):637-44. PubMed ID: 16077911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Sensitive Biocompatible Nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for Anticancer Drug Delivery in Solid Tumors of Syngeneic Mice.
    Dalela M; Shrivastav TG; Kharbanda S; Singh H
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26530-48. PubMed ID: 26528585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy.
    Liang Y; Dong C; Zhang J; Deng L; Dong A
    Drug Dev Ind Pharm; 2017 Jun; 43(6):972-979. PubMed ID: 28121206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer.
    Araki T; Kono Y; Ogawara K; Watanabe T; Ono T; Kimura T; Higaki K
    Biol Pharm Bull; 2012; 35(8):1306-13. PubMed ID: 22863930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy.
    He L; Qing F; Li M; Lan D
    Int J Nanomedicine; 2020; 15():2337-2349. PubMed ID: 32308385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomal miR-493 suppresses MAD2L1 and induces chemoresistance to intraperitoneal paclitaxel therapy in gastric cancer patients with peritoneal metastasis.
    Makinoya M; Miyatani K; Matsumi Y; Sakano Y; Shimizu S; Shishido Y; Hanaki T; Kihara K; Matsunaga T; Yamamoto M; Tokuyasu N; Takano S; Sakamoto T; Hasegawa T; Saito H; Nakayama Y; Osaki M; Okada F; Fujiwara Y
    Sci Rep; 2024 May; 14(1):10075. PubMed ID: 38698201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.