BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20943177)

  • 1. Phytophthora kernoviae oospore maturity, germination, and infection.
    Widmer TL
    Fungal Biol; 2010 Aug; 114(8):661-8. PubMed ID: 20943177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oospores progenies from Phytophthora ramorum.
    Xavier B; Annelies V; Kurt H; Fréderic L; Anne C
    Fungal Biol; 2010 Apr; 114(4):369-78. PubMed ID: 20943147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oospore Production of Phytophthora infestans in Potato and Tomato Leaves.
    Cohen Y; Farkash S; Reshit Z; Baider A
    Phytopathology; 1997 Feb; 87(2):191-6. PubMed ID: 18945141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In planta selfing and oospore production of Phytophthora cinnamomi in the presence of Acacia pulchella.
    Jayasekera AU; McComb JA; Shearer BL; Hardy GE
    Mycol Res; 2007 Mar; 111(Pt 3):355-62. PubMed ID: 17350243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homothallic sexual reproduction of Pustula helianthicola and germination of oospores.
    Lava SS; Spring O
    Fungal Biol; 2012 Sep; 116(9):976-84. PubMed ID: 22954340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal inactivation of Phytophthora capsici oospores.
    Etxeberria A; Mendarte S; Larregla S
    Rev Iberoam Micol; 2011; 28(2):83-90. PubMed ID: 21352945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oospore Formation by Phytophthora infestans in Potato Tubers.
    Levin A; Baider A; Rubin E; Gisi U; Cohen Y
    Phytopathology; 2001 Jun; 91(6):579-85. PubMed ID: 18943947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in the UK.
    Brasier CM; Beales PA; Kirk SA; Denman S; Rose J
    Mycol Res; 2005 Aug; 109(Pt 8):853-9. PubMed ID: 16175787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of viability of Phytophthora capsici oospores with the tetrazolium bromide staining test versus a plasmolysis method.
    Etxeberria A; Mendarte S; Larregla S
    Rev Iberoam Micol; 2011; 28(1):43-9. PubMed ID: 21167295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of differentially activated pathways in Phytophthora sojae at the mycelial, cyst, and oospore stages by TMT-based quantitative proteomics analysis.
    Zhang C; Cui T; Zhang F; Xue Z; Miao J; Wang W; Liu X
    J Proteomics; 2020 Jun; 221():103776. PubMed ID: 32268220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oospore stage of
    Shishkoff N
    Mycologia; 2019; 111(4):632-646. PubMed ID: 31136264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental and Genetic Factors Influencing Self-Fertility in Phytophthora infestans.
    Smart CD; Mayton H; Mizubuti ES; Willmann MR; Fry WE
    Phytopathology; 2000 Sep; 90(9):987-94. PubMed ID: 18944524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprinkling irrigation enhances production of oospores of phytophthora infestans in field-grown crops of potato.
    Cohen Y; Farkash S; Baider A; Shaw DS
    Phytopathology; 2000 Oct; 90(10):1105-11. PubMed ID: 18944473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of Oospores of Phytophthora capsici in Soil.
    Babadoost M; Pavon C
    Plant Dis; 2013 Nov; 97(11):1478-1483. PubMed ID: 30708464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain.
    Yang X; Zhao W; Hua C; Zheng X; Jing M; Li D; Govers F; Meijer HJ; Wang Y
    Mol Microbiol; 2013 Apr; 88(2):382-94. PubMed ID: 23448757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control of Phytophthora ramorumon rhododendron.
    Orlikowski LB
    Commun Agric Appl Biol Sci; 2004; 69(4):687-92. PubMed ID: 15756859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature and moisture period on infection of Rhododendron 'Cunningham's White' by Phytophthora ramorum.
    Tooley PW; Browning M; Kyde KL; Berner D
    Phytopathology; 2009 Sep; 99(9):1045-52. PubMed ID: 19671006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative models for germination and infection of Pseudoperonospora cubensis in response to temperature and duration of leaf wetness.
    Arauz LF; Neufeld KN; Lloyd AL; Ojiambo PS
    Phytopathology; 2010 Sep; 100(9):959-67. PubMed ID: 20701494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytophthora aquimorbida sp. nov. and Phytophthora taxon 'aquatilis' recovered from irrigation reservoirs and a stream in Virginia, USA.
    Hong C; Richardson PA; Hao W; Ghimire SR; Kong P; Moorman GW; Lea-Cox JD; Ross DS
    Mycologia; 2012; 104(5):1097-108. PubMed ID: 22492404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal effects on sporangium and zoospore production by
    Tooley PW; Browning M; Vinyard B
    Mycologia; 2020; 112(3):519-532. PubMed ID: 32330110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.