These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 20943285)
1. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum). Strazzer P; Guzzo F; Levi M J Plant Physiol; 2011 Feb; 168(3):288-93. PubMed ID: 20943285 [TBL] [Abstract][Full Text] [Related]
2. Interactive Effect of Melatonin and UV-C on Phenylpropanoid Metabolite Production and Antioxidant Potential in Callus Cultures of Purple Basil ( Nazir M; Asad Ullah M; Mumtaz S; Siddiquah A; Shah M; Drouet S; Hano C; Abbasi BH Molecules; 2020 Feb; 25(5):. PubMed ID: 32121015 [TBL] [Abstract][Full Text] [Related]
3. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct In Vitro Antioxidant Activities and In Vivo Protective Effects against UV stress. Nazir M; Tungmunnithum D; Bose S; Drouet S; Garros L; Giglioli-Guivarc'h N; Abbasi BH; Hano C J Agric Food Chem; 2019 Feb; 67(7):1847-1859. PubMed ID: 30681331 [TBL] [Abstract][Full Text] [Related]
4. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil ( Kwon DY; Kim YB; Kim JK; Park SU Prep Biochem Biotechnol; 2021; 51(1):35-43. PubMed ID: 32687005 [TBL] [Abstract][Full Text] [Related]
5. Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Battini F; Bernardi R; Turrini A; Agnolucci M; Giovannetti M Mycorrhiza; 2016 Oct; 26(7):699-707. PubMed ID: 27179537 [TBL] [Abstract][Full Text] [Related]
7. Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Kintzios S; Kollias H; Straitouris E; Makri O Biotechnol Lett; 2004 Mar; 26(6):521-3. PubMed ID: 15127795 [TBL] [Abstract][Full Text] [Related]
8. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Toussaint J-; Smith FA; Smith SE Mycorrhiza; 2007 Jun; 17(4):291-297. PubMed ID: 17273856 [TBL] [Abstract][Full Text] [Related]
9. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. Nadeem M; Abbasi BH; Younas M; Ahmad W; Zahir A; Hano C J Photochem Photobiol B; 2019 Jan; 190():172-178. PubMed ID: 30268421 [TBL] [Abstract][Full Text] [Related]
10. Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). Kim HJ; Chen F; Wang X; Rajapakse NC J Agric Food Chem; 2006 Mar; 54(6):2327-32. PubMed ID: 16536615 [TBL] [Abstract][Full Text] [Related]
11. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Gang DR; Beuerle T; Ullmann P; Werck-Reichhart D; Pichersky E Plant Physiol; 2002 Nov; 130(3):1536-44. PubMed ID: 12428018 [TBL] [Abstract][Full Text] [Related]
12. Application of multivariate analysis to assess stress by Cd, Pb and Al in basil (Ocimum basilicum L.) using caffeic acid, rosmarinic acid, total phenolics, total flavonoids and total dry mass in response. do Prado NB; de Abreu CB; Pinho CS; Junior MMN; Silva MD; Espino M; Silva MF; Dias FS Food Chem; 2022 Jan; 367():130682. PubMed ID: 34364147 [TBL] [Abstract][Full Text] [Related]
13. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system. Srivastava S; Conlan XA; Cahill DM; Adholeya A Mycorrhiza; 2016 Nov; 26(8):919-930. PubMed ID: 27485855 [TBL] [Abstract][Full Text] [Related]
14. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Nguyen PM; Niemeyer ED J Agric Food Chem; 2008 Sep; 56(18):8685-91. PubMed ID: 18712879 [TBL] [Abstract][Full Text] [Related]
15. Effect of Iodine treatments on Ocimum basilicum L.: Biofortification, phenolics production and essential oil composition. Kiferle C; Ascrizzi R; Martinelli M; Gonzali S; Mariotti L; Pistelli L; Flamini G; Perata P PLoS One; 2019; 14(12):e0226559. PubMed ID: 31841559 [TBL] [Abstract][Full Text] [Related]
16. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Kim HJ; Chen F; Wang X; Rajapakse NC J Agric Food Chem; 2005 May; 53(9):3696-701. PubMed ID: 15853422 [TBL] [Abstract][Full Text] [Related]
17. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum. Srivastava S; Adholeya A; Conlan XA; Cahill DM Plant Foods Hum Nutr; 2016 Mar; 71(1):72-80. PubMed ID: 26803763 [TBL] [Abstract][Full Text] [Related]
18. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Landi M; Guidi L; Pardossi A; Tattini M; Gould KS Planta; 2014 Nov; 240(5):941-53. PubMed ID: 24903358 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Kwon DY; Li X; Kim JK; Park SU Saudi J Biol Sci; 2019 Mar; 26(3):469-472. PubMed ID: 30899160 [TBL] [Abstract][Full Text] [Related]
20. Effect of Water Stress and Storage Time on Anthocyanins and Other Phenolics of Different Genotypes of Fresh Sweet Basil. Luna MC; Bekhradi F; Ferreres F; Jordán MJ; Delshad M; Gil MI J Agric Food Chem; 2015 Oct; 63(42):9223-31. PubMed ID: 26473474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]