These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 20943326)
1. Targeting glutamate mediated excitotoxicity in Huntington's disease: neural progenitors and partial glutamate antagonist--memantine. Anitha M; Nandhu MS; Anju TR; Jes P; Paulose CS Med Hypotheses; 2011 Jan; 76(1):138-40. PubMed ID: 20943326 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Wu J; Tang T; Bezprozvanny I Neurosci Lett; 2006 Oct; 407(3):219-23. PubMed ID: 16959411 [TBL] [Abstract][Full Text] [Related]
3. Excitotoxic neuronal death and the pathogenesis of Huntington's disease. Estrada Sánchez AM; Mejía-Toiber J; Massieu L Arch Med Res; 2008 Apr; 39(3):265-76. PubMed ID: 18279698 [TBL] [Abstract][Full Text] [Related]
5. Glutamate toxicity in the striatum of the R6/2 Huntington's disease transgenic mice is age-dependent and correlates with decreased levels of glutamate transporters. Estrada-Sánchez AM; Montiel T; Segovia J; Massieu L Neurobiol Dis; 2009 Apr; 34(1):78-86. PubMed ID: 19168136 [TBL] [Abstract][Full Text] [Related]
6. Selective neuronal degeneration in Huntington's disease. Cowan CM; Raymond LA Curr Top Dev Biol; 2006; 75():25-71. PubMed ID: 16984809 [TBL] [Abstract][Full Text] [Related]
7. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Tattersfield AS; Croon RJ; Liu YW; Kells AP; Faull RL; Connor B Neuroscience; 2004; 127(2):319-32. PubMed ID: 15262322 [TBL] [Abstract][Full Text] [Related]
8. Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington's disease. Calabresi P; Centonze D; Pisani A; Sancesario G; Gubellini P; Marfia GA; Bernardi G Ann Neurol; 1998 May; 43(5):586-97. PubMed ID: 9585352 [TBL] [Abstract][Full Text] [Related]
9. Single nuclei RNA-seq reveals a medium spiny neuron glutamate excitotoxicity signature prior to the onset of neuronal death in an ovine Huntington's disease model. Jiang A; You L; Handley RR; Hawkins V; Reid SJ; Jacobsen JC; Patassini S; Rudiger SR; Mclaughlan CJ; Kelly JM; Verma PJ; Bawden CS; Gusella JF; MacDonald ME; Waldvogel HJ; Faull RLM; Lehnert K; Snell RG Hum Mol Genet; 2024 Aug; 33(17):1524-1539. PubMed ID: 38776957 [TBL] [Abstract][Full Text] [Related]
10. A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington's disease human brain. Curtis MA; Faull RL; Glass M J Chem Neuroanat; 2006 Apr; 31(3):210-5. PubMed ID: 16533591 [TBL] [Abstract][Full Text] [Related]
11. [Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia]. Tanović A; Alfaro V Rev Neurol; 2006 May 16-31; 42(10):607-16. PubMed ID: 16703529 [TBL] [Abstract][Full Text] [Related]
12. Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease. Dure LS; Young AB; Penney JB Ann Neurol; 1991 Dec; 30(6):785-93. PubMed ID: 1665055 [TBL] [Abstract][Full Text] [Related]
13. Bis(7)-tacrine prevents glutamate-induced excitotoxicity more potently than memantine by selectively inhibiting NMDA receptors. Liu YW; Li CY; Luo JL; Li WM; Fu HJ; Lao YZ; Liu LJ; Pang YP; Chang DC; Li ZW; Peoples RW; Ai YX; Han YF Biochem Biophys Res Commun; 2008 May; 369(4):1007-11. PubMed ID: 18328812 [TBL] [Abstract][Full Text] [Related]
14. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Fan MM; Raymond LA Prog Neurobiol; 2007 Apr; 81(5-6):272-93. PubMed ID: 17188796 [TBL] [Abstract][Full Text] [Related]
15. The Alzheimer's disease drug memantine increases the number of radial glia-like progenitor cells in adult hippocampus. Namba T; Maekawa M; Yuasa S; Kohsaka S; Uchino S Glia; 2009 Aug; 57(10):1082-90. PubMed ID: 19115386 [TBL] [Abstract][Full Text] [Related]
16. Neuroprotective properties of memantine in different in vitro and in vivo models of excitotoxicity. Volbracht C; van Beek J; Zhu C; Blomgren K; Leist M Eur J Neurosci; 2006 May; 23(10):2611-22. PubMed ID: 16817864 [TBL] [Abstract][Full Text] [Related]
17. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons. Rudinskiy N; Kaneko YA; Beesen AA; Gokce O; Régulier E; Déglon N; Luthi-Carter R J Neurochem; 2009 Oct; 111(2):460-72. PubMed ID: 19686238 [TBL] [Abstract][Full Text] [Related]
18. Experimental glutamatergic excitotoxicity in rabbit retinal ganglion cells: block by memantine. Hare WA; Wheeler L Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2940-8. PubMed ID: 19136701 [TBL] [Abstract][Full Text] [Related]
19. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington's disease. Beister A; Kraus P; Kuhn W; Dose M; Weindl A; Gerlach M J Neural Transm Suppl; 2004; (68):117-22. PubMed ID: 15354397 [TBL] [Abstract][Full Text] [Related]
20. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease. Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]