These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 20943426)
1. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique. Kaliviotis E; Dusting J; Balabani S Med Eng Phys; 2011 Sep; 33(7):824-31. PubMed ID: 20943426 [TBL] [Abstract][Full Text] [Related]
3. On the effect of microstructural changes of blood on energy dissipation in Couette flow. Kaliviotis E; Yianneskis M Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131 [TBL] [Abstract][Full Text] [Related]
4. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction. Ismailov RM Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779 [TBL] [Abstract][Full Text] [Related]
5. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system. Mehri R; Mavriplis C; Fenech M PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907 [TBL] [Abstract][Full Text] [Related]
6. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Armstrong JK; Meiselman HJ; Wenby RB; Fisher TC Biorheology; 2001; 38(2-3):239-47. PubMed ID: 11381178 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions. Lerche D; Frömer D Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179 [TBL] [Abstract][Full Text] [Related]
9. Non-Newtonian viscosity of human blood: flow-induced changes in microstructure. Thurston GB Biorheology; 1994; 31(2):179-92. PubMed ID: 8729480 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Cokelet GR; Brown JR; Codd SL; Seymour JD Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468 [TBL] [Abstract][Full Text] [Related]
11. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Stoltz JF; Donner M Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037 [TBL] [Abstract][Full Text] [Related]
12. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity. Janzen J; Elliott TG; Carter CJ; Brooks DE Biorheology; 2000; 37(3):225-37. PubMed ID: 11026942 [TBL] [Abstract][Full Text] [Related]
13. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog. Banerjee RK; Back LH; Cho YI Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355 [TBL] [Abstract][Full Text] [Related]
14. Large scale simulation of red blood cell aggregation in shear flows. Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770 [TBL] [Abstract][Full Text] [Related]
15. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter. Reinke W; Johnson PC; Gaehtgens P Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742 [TBL] [Abstract][Full Text] [Related]
16. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Kim MB; Sarelius IH Microcirculation; 2003 Apr; 10(2):167-78. PubMed ID: 12700585 [TBL] [Abstract][Full Text] [Related]
17. Phenomenological characterization of blood's intermediate shear rate: a new concept for hemorheology. Tabesh H; Poorkhalil A; Akbari H; Rafiei F; Mottaghy K Phys Eng Sci Med; 2022 Dec; 45(4):1205-1217. PubMed ID: 36319841 [TBL] [Abstract][Full Text] [Related]
18. Red blood cell deformability is very slightly decreased in erythropoietin deficient mice. Pichon A; Lamarre Y; Voituron N; Marchant D; Vilar J; Richalet JP; Connes P Clin Hemorheol Microcirc; 2014; 56(1):41-6. PubMed ID: 23302595 [TBL] [Abstract][Full Text] [Related]
19. Hemodynamic effects of red blood cell aggregation. Baskurt OK; Meiselman HJ Indian J Exp Biol; 2007 Jan; 45(1):25-31. PubMed ID: 17249324 [TBL] [Abstract][Full Text] [Related]
20. Opposite effects of red blood cell aggregation on resistance to blood flow. Vicaut E J Cardiovasc Surg (Torino); 1995 Aug; 36(4):361-8. PubMed ID: 7593148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]