BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20943501)

  • 1. Contamination by uranium mine drainages affects fungal growth and interactions between fungal species and strains.
    Ferreira V; Gonçalves AL; Pratas J; Canhoto C
    Mycologia; 2010; 102(5):1004-11. PubMed ID: 20943501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.
    Ferreira V; Gonçalves AL; Canhoto C
    Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain.
    López-Archilla AI; González AE; Terrón MC; Amils R
    Can J Microbiol; 2004 Nov; 50(11):923-34. PubMed ID: 15644909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China.
    Khan S; Cao Q; Zheng YM; Huang YZ; Zhu YG
    Environ Pollut; 2008 Apr; 152(3):686-92. PubMed ID: 17720286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of metals on growth and sporulation of aquatic fungi.
    Azevedo MM; Cássio F
    Drug Chem Toxicol; 2010 Jul; 33(3):269-78. PubMed ID: 20429804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site.
    Concas A; Ardau C; Cristini A; Zuddas P; Cao G
    Chemosphere; 2006 Apr; 63(2):244-53. PubMed ID: 16216301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses in the mycelial growth of Aspergillus niger isolates to arsenic contaminated environments and their resistance to exogenic metal stress.
    Bucková M; Godocíková J; Polek B
    J Basic Microbiol; 2007 Aug; 47(4):295-300. PubMed ID: 17647207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas.
    Faria MS; Lopes RJ; Malcato J; Nogueira AJ; Soares AM
    Environ Pollut; 2008 Jan; 151(1):213-21. PubMed ID: 17482733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites.
    Oladipo OG; Awotoye OO; Olayinka A; Bezuidenhout CC; Maboeta MS
    Braz J Microbiol; 2018; 49(1):29-37. PubMed ID: 28844883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany.
    Ehrman JM; Bärlocher F; Wennrich R; Krauss GJ; Krauss G
    Sci Total Environ; 2008 Jan; 389(2-3):486-96. PubMed ID: 17928036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP
    J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.
    Haferburg G; Merten D; Büchel G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal growth in culture media simulating an extreme environment.
    Alvarez-Pérez S; Blanco JL; Alba P; García ME
    Rev Iberoam Micol; 2011; 28(4):159-65. PubMed ID: 21473927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute and chronic toxicity of effluent water from an abandoned uranium mine.
    Antunes SC; Pereira R; Gonçalves F
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):207-13. PubMed ID: 17587142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomic, functional, and ecologic responses of the common freshwater fungus Neonectria lugdunensis to mine drainage stress.
    Seena S; Sobral O; Cano A
    Sci Total Environ; 2020 May; 718():137359. PubMed ID: 32092520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of industrial waste water effluents on mycoflora of the shore sediments of the 3rd oxidation pond, with reference to biosorption of heavy metals.
    Sharaf EF
    Acta Microbiol Pol; 2002; 51(3):293-306. PubMed ID: 12588104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium.
    Nedelkova M; Merroun ML; Rossberg A; Hennig C; Selenska-Pobell S
    FEMS Microbiol Ecol; 2007 Mar; 59(3):694-705. PubMed ID: 17381522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.