These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 20943904)

  • 41. Intrinsic and synaptic determinants of receptive field plasticity in Purkinje cells of the mouse cerebellum.
    Lin TF; Busch SE; Hansel C
    Nat Commun; 2024 May; 15(1):4645. PubMed ID: 38821918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SK2 channel expression and function in cerebellar Purkinje cells.
    Hosy E; Piochon C; Teuling E; Rinaldo L; Hansel C
    J Physiol; 2011 Jul; 589(Pt 14):3433-40. PubMed ID: 21521760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity.
    Beierlein M; Fioravante D; Regehr WG
    Neuron; 2007 Jun; 54(6):949-59. PubMed ID: 17582334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrinsic plasticity of Purkinje cell serves homeostatic regulation of fear memory.
    Lee J; Kim SH; Jang DC; Jang M; Bak MS; Shim HG; Lee YS; Kim SJ
    Mol Psychiatry; 2024 Feb; 29(2):247-256. PubMed ID: 38017229
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses.
    Mitoma H; Konishi S
    Neuroscience; 1999; 88(3):871-83. PubMed ID: 10363824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsic Plasticity of Cerebellar Purkinje Cells Contributes to Motor Memory Consolidation.
    Jang DC; Shim HG; Kim SJ
    J Neurosci; 2020 May; 40(21):4145-4157. PubMed ID: 32295816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels.
    Rizwan AP; Zhan X; Zamponi GW; Turner RW
    J Neurosci; 2016 Nov; 36(44):11196-11207. PubMed ID: 27807163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Critical involvement of postsynaptic protein kinase activation in long-term potentiation at hippocampal mossy fiber synapses on CA3 interneurons.
    Galván EJ; Cosgrove KE; Mauna JC; Card JP; Thiels E; Meriney SD; Barrionuevo G
    J Neurosci; 2010 Feb; 30(8):2844-55. PubMed ID: 20181582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output.
    McKay BE; Engbers JD; Mehaffey WH; Gordon GR; Molineux ML; Bains JS; Turner RW
    J Neurophysiol; 2007 Apr; 97(4):2590-604. PubMed ID: 17267759
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ca currents activated by spontaneous firing and synaptic disinhibition in neurons of the cerebellar nuclei.
    Zheng N; Raman IM
    J Neurosci; 2009 Aug; 29(31):9826-38. PubMed ID: 19657035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning.
    Schreurs BG
    Neurobiol Learn Mem; 2019 Dec; 166():107094. PubMed ID: 31542329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use-dependent changes in synaptic strength at the Purkinje cell to deep nuclear synapse.
    Aizenman CD; Huang EJ; Manis PB; Linden DJ
    Prog Brain Res; 2000; 124():257-73. PubMed ID: 10943131
    [No Abstract]   [Full Text] [Related]  

  • 55. Intracellular Zn
    Eom K; Hyun JH; Lee DG; Kim S; Jeong HJ; Kang JS; Ho WK; Lee SH
    J Neurosci; 2019 May; 39(20):3812-3831. PubMed ID: 30833508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells.
    Kano M; Rexhausen U; Dreessen J; Konnerth A
    Nature; 1992 Apr; 356(6370):601-4. PubMed ID: 1313949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits.
    Piochon C; Kruskal P; Maclean J; Hansel C
    Front Neural Circuits; 2012; 6():124. PubMed ID: 23335888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells.
    Pinto TM; Schilstra MJ; Roque AC; Steuber V
    Sci Rep; 2020 Jun; 10(1):9019. PubMed ID: 32488204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. No parallel fiber volleys in the cerebellar cortex: evidence from cross-correlation analysis between Purkinje cells in a computer model and in recordings from anesthetized rats.
    Jaeger D
    J Comput Neurosci; 2003; 14(3):311-27. PubMed ID: 12766430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The general principles of synaptic plasticity in the neocortex, hippocampus and cerebellum].
    Sil'skiĭ IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(2):374-92. PubMed ID: 9173742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.