BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2094415)

  • 1. Electrochemical investigations of immunologically reactive procainamide metabolites.
    Wheeler JF; Lunte CE; Zimmer H; Heineman WR
    J Pharm Biomed Anal; 1990; 8(2):143-50. PubMed ID: 2094415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical determination of N-oxidized procainamide metabolites and functional assessment of effects on murine cells in vitro.
    Wheeler JF; Lunte CE; Heineman WR; Adams L; Hess EV
    Proc Soc Exp Biol Med; 1988 Jul; 188(3):381-6. PubMed ID: 2455906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of metabolically derived nitroprocainamide in the urine of procainamide-dosed humans and rats by liquid chromatography with electrochemical detection.
    Wheeler JF; Adams LE; Mongey AB; Roberts SM; Heineman WR; Hess EV
    Drug Metab Dispos; 1991; 19(3):691-5. PubMed ID: 1680638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of procainamide to a hydroxylamine by rat and human hepatic microsomes.
    Uetrecht JP; Sweetman BJ; Woosley RL; Oates JA
    Drug Metab Dispos; 1984; 12(1):77-81. PubMed ID: 6141917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide.
    Uetrecht JP
    J Pharmacol Exp Ther; 1985 Feb; 232(2):420-5. PubMed ID: 3968643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of oxidative metabolites of procainamide.
    Rubin RL; Uetrecht JP; Jones JE
    J Pharmacol Exp Ther; 1987 Sep; 242(3):833-41. PubMed ID: 3656116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.
    Bussy U; Chung-Davidson YW; Li K; Li W
    Anal Bioanal Chem; 2014 Nov; 406(28):7253-60. PubMed ID: 25234306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical generation of selegiline metabolites coupled to mass spectrometry.
    Mielczarek P; Smoluch M; Kotlinska JH; Labuz K; Gotszalk T; Babij M; Suder P; Silberring J
    J Chromatogr A; 2015 Apr; 1389():96-103. PubMed ID: 25746755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of procainamide hydroxylamine by rat and human liver microsomes.
    Budinsky RA; Roberts SM; Coats EA; Adams L; Hess EV
    Drug Metab Dispos; 1987; 15(1):37-43. PubMed ID: 2881757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Chlorination and oxidation of procainamide by myeloperoxidase: toxicological implications.
    Uetrecht JP; Zahid N
    Chem Res Toxicol; 1991; 4(2):218-22. PubMed ID: 1664258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltammetric behavior of nitrazepam and its determination in serum using liquid chromatography with redox mode dual-electrode detection.
    Honeychurch KC; Smith GC; Hart JP
    Anal Chem; 2006 Jan; 78(2):416-23. PubMed ID: 16408922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and identification of reactive metabolites by electrochemistry and immobilized enzymes coupled on-line to liquid chromatography/mass spectrometry.
    Lohmann W; Karst U
    Anal Chem; 2007 Sep; 79(17):6831-9. PubMed ID: 17685550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics reveals the metabolic map of procainamide in humans and mice.
    Li F; Patterson AD; Krausz KW; Dick B; Frey FJ; Gonzalez FJ; Idle JR
    Biochem Pharmacol; 2012 May; 83(10):1435-44. PubMed ID: 22387617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunomodulatory effects of procainamide metabolites: their implications in drug-related lupus.
    Adams LE; Sanders CE; Budinsky RA; Donovan-Brand R; Roberts SM; Hess EV
    J Lab Clin Med; 1989 Apr; 113(4):482-92. PubMed ID: 2539420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Procainamide, a drug causing lupus, induces prostaglandin H synthase-2 and formation of T cell-sensitizing drug metabolites in mouse macrophages.
    Goebel C; Vogel C; Wulferink M; Mittmann S; Sachs B; Schraa S; Abel J; Degen G; Uetrecht J; Gleichmann E
    Chem Res Toxicol; 1999 Jun; 12(6):488-500. PubMed ID: 10368311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of electrochemical oxidation and model peptides to study nucleophilic biological targets of reactive metabolites: the case of rimonabant.
    Thorsell A; Isin EM; Jurva U
    Chem Res Toxicol; 2014 Oct; 27(10):1808-20. PubMed ID: 25210840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling.
    Bussy U; Boisseau R; Croyal M; Temgoua RCT; Boujtita M
    Anal Bioanal Chem; 2022 Mar; 414(7):2363-2370. PubMed ID: 35022830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical oxidation of CBS-113 A, a new anti-inflammatory drug: applicability to liquid chromatography-electrochemical detection.
    Leroy P; Baudrit O; Blanchin MD; Nicolas A; Fabre H
    J Pharm Biomed Anal; 1995 Aug; 13(9):1133-40. PubMed ID: 8573639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatography of the antihistamine pyrilamine and its N-oxide using electrochemical detection.
    Billedeau SM; Holder CL; Getek TA
    J Chromatogr; 1990 Dec; 534():151-9. PubMed ID: 2094702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of procainamide to the cytotoxic hydroxylamine by neutrophils activated in vitro.
    Rubin RL; Curnutte JT
    J Clin Invest; 1989 Apr; 83(4):1336-43. PubMed ID: 2539397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.