BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20944678)

  • 21. Elucidating the role of protein kinase C in chronic lymphocytic leukaemia.
    Michie AM; Nakagawa R
    Hematol Oncol; 2006 Sep; 24(3):134-8. PubMed ID: 16841369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavopiridol in the treatment of chronic lymphocytic leukemia.
    Christian BA; Grever MR; Byrd JC; Lin TS
    Curr Opin Oncol; 2007 Nov; 19(6):573-8. PubMed ID: 17906454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The novel tubulin-targeting agent pyrrolo-1,5-benzoxazepine-15 induces apoptosis in poor prognostic subgroups of chronic lymphocytic leukemia.
    McElligott AM; Maginn EN; Greene LM; McGuckin S; Hayat A; Browne PV; Butini S; Campiani G; Catherwood MA; Vandenberghe E; Williams DC; Zisterer DM; Lawler M
    Cancer Res; 2009 Nov; 69(21):8366-75. PubMed ID: 19826055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell cycle regulatory proteins and apoptosis in B-cell chronic lymphocytic leukemia.
    Wolowiec D; Ciszak L; Kosmaczewska A; Bocko D; Teodorowska R; Frydecka I; Kuliczkowski K
    Haematologica; 2001 Dec; 86(12):1296-304. PubMed ID: 11726322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flavopiridol: where do we stand in chronic lymphocytic leukemia?
    Lin TS; Porcu P
    Leukemia; 2004 Feb; 18(2):243-6. PubMed ID: 14671637
    [No Abstract]   [Full Text] [Related]  

  • 26. Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from Cancer and Leukemia Group B study 19805.
    Byrd JC; Peterson BL; Gabrilove J; Odenike OM; Grever MR; Rai K; Larson RA;
    Clin Cancer Res; 2005 Jun; 11(11):4176-81. PubMed ID: 15930354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breaking good: the inexorable rise of BTK inhibitors in the treatment of chronic lymphocytic leukaemia.
    Hutchinson CV; Dyer MJ
    Br J Haematol; 2014 Jul; 166(1):12-22. PubMed ID: 24749490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma.
    Tong WG; Chen R; Plunkett W; Siegel D; Sinha R; Harvey RD; Badros AZ; Popplewell L; Coutre S; Fox JA; Mahadocon K; Chen T; Kegley P; Hoch U; Wierda WG
    J Clin Oncol; 2010 Jun; 28(18):3015-22. PubMed ID: 20479412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drugging cell cycle kinases in cancer therapy.
    Blagden S; de Bono J
    Curr Drug Targets; 2005 May; 6(3):325-35. PubMed ID: 15857291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overview of CDK9 as a target in cancer research.
    Morales F; Giordano A
    Cell Cycle; 2016; 15(4):519-27. PubMed ID: 26766294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is mTOR inhibition a therapeutic option in chronic lymphocytic leukemia?
    Decker T
    Leuk Lymphoma; 2008 Dec; 49(12):2235-6. PubMed ID: 19052968
    [No Abstract]   [Full Text] [Related]  

  • 32. A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader.
    Huang HT; Dobrovolsky D; Paulk J; Yang G; Weisberg EL; Doctor ZM; Buckley DL; Cho JH; Ko E; Jang J; Shi K; Choi HG; Griffin JD; Li Y; Treon SP; Fischer ES; Bradner JE; Tan L; Gray NS
    Cell Chem Biol; 2018 Jan; 25(1):88-99.e6. PubMed ID: 29129717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinase inhibitors in CLL: drawing the roadmap.
    Fowler N
    Blood; 2021 May; 137(20):2717-2719. PubMed ID: 34014294
    [No Abstract]   [Full Text] [Related]  

  • 34. BMS buys Turning Point Therapeutics and its kinase inhibitors for $4.1 billion.
    Mullard A
    Nat Rev Drug Discov; 2022 Jul; 21(7):481. PubMed ID: 35681027
    [No Abstract]   [Full Text] [Related]  

  • 35. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling.
    Huber KV; Olek KM; Müller AC; Tan CS; Bennett KL; Colinge J; Superti-Furga G
    Nat Methods; 2015 Nov; 12(11):1055-7. PubMed ID: 26389571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized chemical proteomics assay for kinase inhibitor profiling.
    Médard G; Pachl F; Ruprecht B; Klaeger S; Heinzlmeir S; Helm D; Qiao H; Ku X; Wilhelm M; Kuehne T; Wu Z; Dittmann A; Hopf C; Kramer K; Kuster B
    J Proteome Res; 2015 Mar; 14(3):1574-86. PubMed ID: 25660469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing immobilized kinase inhibitors and covalent ATP probes for proteomic profiling of kinase expression and drug selectivity.
    Lemeer S; Zörgiebel C; Ruprecht B; Kohl K; Kuster B
    J Proteome Res; 2013 Apr; 12(4):1723-31. PubMed ID: 23495751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive analysis of kinase inhibitor selectivity.
    Davis MI; Hunt JP; Herrgard S; Ciceri P; Wodicka LM; Pallares G; Hocker M; Treiber DK; Zarrinkar PP
    Nat Biotechnol; 2011 Oct; 29(11):1046-51. PubMed ID: 22037378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of AR-regulated AFF3 contributes to prostate cancer progression and reduces ferroptosis sensitivity by downregulating ACSL4 based on single-cell sequencing analysis.
    Fan A; Li Y; Zhang Y; Meng W; Pan W; Chen M; Ma Z; Chen W
    Apoptosis; 2024 Mar; ():. PubMed ID: 38478171
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.