These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 20944682)
21. Chemical mediation of coral larval settlement by crustose coralline algae. Tebben J; Motti CA; Siboni N; Tapiolas DM; Negri AP; Schupp PJ; Kitamura M; Hatta M; Steinberg PD; Harder T Sci Rep; 2015 Jun; 5():10803. PubMed ID: 26042834 [TBL] [Abstract][Full Text] [Related]
22. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Webster NS; Negri AP; Botté ES; Laffy PW; Flores F; Noonan S; Schmidt C; Uthicke S Sci Rep; 2016 Jan; 6():19324. PubMed ID: 26758800 [TBL] [Abstract][Full Text] [Related]
23. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. Tebben J; Tapiolas DM; Motti CA; Abrego D; Negri AP; Blackall LL; Steinberg PD; Harder T PLoS One; 2011 Apr; 6(4):e19082. PubMed ID: 21559509 [TBL] [Abstract][Full Text] [Related]
24. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836 [TBL] [Abstract][Full Text] [Related]
25. A cross-ocean comparison of responses to settlement cues in reef-building corals. Davies SW; Meyer E; Guermond SM; Matz MV PeerJ; 2014; 2():e333. PubMed ID: 24765568 [TBL] [Abstract][Full Text] [Related]
26. Variations in the abundance and structural diversity of microbes forming biofilms in a thermally stressed coral reef system. Mahmoud H Mar Pollut Bull; 2015 Nov; 100(2):710-8. PubMed ID: 26494248 [TBL] [Abstract][Full Text] [Related]
27. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga. Huggett MJ; McMahon K; Bernasconi R Environ Microbiol; 2018 Aug; 20(8):2769-2782. PubMed ID: 29575500 [TBL] [Abstract][Full Text] [Related]
28. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. Roik A; Röthig T; Roder C; Ziegler M; Kremb SG; Voolstra CR PLoS One; 2016; 11(11):e0163939. PubMed ID: 27828965 [TBL] [Abstract][Full Text] [Related]
29. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. Haas AF; Nelson CE; Wegley Kelly L; Carlson CA; Rohwer F; Leichter JJ; Wyatt A; Smith JE PLoS One; 2011; 6(11):e27973. PubMed ID: 22125645 [TBL] [Abstract][Full Text] [Related]
30. Species-Specific Differences in the Microbiomes and Organic Exudates of Crustose Coralline Algae Influence Bacterioplankton Communities. Quinlan ZA; Ritson-Williams R; Carroll BJ; Carlson CA; Nelson CE Front Microbiol; 2019; 10():2397. PubMed ID: 31781048 [TBL] [Abstract][Full Text] [Related]
31. Trophic cascades result in large-scale coralline algae loss through differential grazer effects. O'Leary JK; McClanahan TR Ecology; 2010 Dec; 91(12):3584-97. PubMed ID: 21302830 [TBL] [Abstract][Full Text] [Related]
32. Warm temperature alters the chemical cue preference of Acropora tenuis and Heliopora coerulea larvae. Da-Anoy JP; Cabaitan PC; Conaco C Mar Pollut Bull; 2020 Dec; 161(Pt B):111755. PubMed ID: 33120034 [TBL] [Abstract][Full Text] [Related]
33. Benthic micro- and macro-community succession and coral recruitment under overfishing and nutrient enrichment. Evensen NR; Vanwonterghem I; Doropoulos C; Gouezo M; Botté ES; Webster NS; Mumby PJ Ecology; 2021 Dec; 102(12):e03536. PubMed ID: 34514590 [TBL] [Abstract][Full Text] [Related]
34. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Barott KL; Rodriguez-Mueller B; Youle M; Marhaver KL; Vermeij MJ; Smith JE; Rohwer FL Proc Biol Sci; 2012 Apr; 279(1733):1655-64. PubMed ID: 22090385 [TBL] [Abstract][Full Text] [Related]
35. Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates. Gregg A; Hatay M; Haas A; Robinett N; Barott K; Vermeij M; Marhaver K; Meirelles P; Thompson F; Rohwer F PeerJ; 2013; 1():e107. PubMed ID: 23882444 [TBL] [Abstract][Full Text] [Related]
36. Community assessment of crustose calcifying red algae as coral recruitment substrates. Deinhart M; Mills MS; Schils T PLoS One; 2022; 17(7):e0271438. PubMed ID: 35867665 [TBL] [Abstract][Full Text] [Related]
37. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Diaz-Pulido G; Nash MC; Anthony KR; Bender D; Opdyke BN; Reyes-Nivia C; Troitzsch U Nat Commun; 2014; 5():3310. PubMed ID: 24518160 [TBL] [Abstract][Full Text] [Related]
38. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Sneed JM; Sharp KH; Ritchie KB; Paul VJ Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24850918 [TBL] [Abstract][Full Text] [Related]
39. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Meyer E; Aglyamova GV; Matz MV Mol Ecol; 2011 Sep; 20(17):3599-616. PubMed ID: 21801258 [TBL] [Abstract][Full Text] [Related]
40. Unusually high coral recruitment during the 2016 El Niño in Mo'orea, French Polynesia. Edmunds PJ PLoS One; 2017; 12(10):e0185167. PubMed ID: 29016624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]