These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 20944860)
21. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575 [TBL] [Abstract][Full Text] [Related]
22. Galectin-3 expression is correlated with abnormal prion protein accumulation in murine scrapie. Jin JK; Na YJ; Song JH; Joo HG; Kim S; Kim JI; Choi EK; Carp RI; Kim YS; Shin T Neurosci Lett; 2007 Jun; 420(2):138-43. PubMed ID: 17531384 [TBL] [Abstract][Full Text] [Related]
23. Prion encephalopathies of animals and humans. Prusiner SB Dev Biol Stand; 1993; 80():31-44. PubMed ID: 8270114 [TBL] [Abstract][Full Text] [Related]
25. Lactoferrin induces cell surface retention of prion protein and inhibits prion accumulation. Iwamaru Y; Shimizu Y; Imamura M; Murayama Y; Endo R; Tagawa Y; Ushiki-Kaku Y; Takenouchi T; Kitani H; Mohri S; Yokoyama T; Okada H J Neurochem; 2008 Nov; 107(3):636-46. PubMed ID: 18717818 [TBL] [Abstract][Full Text] [Related]
26. Gold nanoparticle quantitation via fluorescence in solution and cell culture. Aggarwal P; Dobrovolskaia MA Methods Mol Biol; 2011; 697():137-43. PubMed ID: 21116962 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers. Yamaguchi S; Nishida Y; Sasaki K; Kambara M; Kim CL; Ishiguro N; Nagatsuka T; Uzawa H; Horiuchi M Biochem Biophys Res Commun; 2006 Oct; 349(2):485-91. PubMed ID: 16949037 [TBL] [Abstract][Full Text] [Related]
28. A gold nanoparticle-based fluorescence turn-on probe for highly sensitive detection of polyamines. Kim TI; Park J; Kim Y Chemistry; 2011 Oct; 17(43):11978-82. PubMed ID: 21922584 [No Abstract] [Full Text] [Related]
29. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry. Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032 [TBL] [Abstract][Full Text] [Related]
30. A combinatorial approach toward fabrication of surface-adsorbed metal nanoparticles for investigation of an enzyme reaction. Takei H; Yamaguchi T Phys Chem Chem Phys; 2010 May; 12(17):4505-14. PubMed ID: 20407725 [TBL] [Abstract][Full Text] [Related]
38. Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol (3,4,5)-trisphosphate at sub-nanomolar concentrations. Della Sala F; Ceresara E; Micheli F; Fontana S; Prins LJ; Scrimin P Org Biomol Chem; 2023 Jan; 21(4):743-747. PubMed ID: 36601663 [TBL] [Abstract][Full Text] [Related]
39. Nano-Neurotheranostics: Impact of Nanoparticles on Neural Dysfunctions and Strategies to Reduce Toxicity for Improved Efficacy. Vinod C; Jena S Front Pharmacol; 2021; 12():612692. PubMed ID: 33841144 [TBL] [Abstract][Full Text] [Related]
40. The Influence of Size and Chemical Composition of Silver and Gold Nanoparticles on in vivo Toxicity with Potential Applications to Central Nervous System Diseases. Báez DF; Gallardo-Toledo E; Oyarzún MP; Araya E; Kogan MJ Int J Nanomedicine; 2021; 16():2187-2201. PubMed ID: 33758506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]