BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20945314)

  • 21. Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells.
    Wang S; Wang X; Jiang SP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6883-91. PubMed ID: 21409276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts.
    Kim HY; Cho S; Sa YJ; Hwang SM; Park GG; Shin TJ; Jeong HY; Yim SD; Joo SH
    Small; 2016 Oct; 12(38):5347-5353. PubMed ID: 27515995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles.
    López-Cudero A; Vidal-Iglesias FJ; Solla-Gullón J; Herrero E; Aldaz A; Feliu JM
    Phys Chem Chem Phys; 2009 Jan; 11(2):416-24. PubMed ID: 19088999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.
    Zhang J; Sasaki K; Sutter E; Adzic RR
    Science; 2007 Jan; 315(5809):220-2. PubMed ID: 17218522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bromide Ions Triggered Synthesis of Noble Metal-Based Intermetallic Nanocrystals.
    Wang AL; Zhu L; Yun Q; Han S; Zeng L; Cao W; Meng X; Xia J; Lu Q
    Small; 2020 Oct; 16(40):e2003782. PubMed ID: 32877008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation.
    Liu Z; Jackson GS; Eichhorn BW
    Angew Chem Int Ed Engl; 2010 Apr; 49(18):3173-6. PubMed ID: 20340144
    [No Abstract]   [Full Text] [Related]  

  • 30. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol.
    Lee SW; Chen S; Sheng W; Yabuuchi N; Kim YT; Mitani T; Vescovo E; Shao-Horn Y
    J Am Chem Soc; 2009 Nov; 131(43):15669-77. PubMed ID: 19824642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silica nanoparticles for template synthesis of supported Pt and Pt-Ru electrocatalysts.
    Li A; Zhao JX; Pierce DT
    J Colloid Interface Sci; 2010 Nov; 351(2):365-73. PubMed ID: 20728899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
    Axnanda S; Cummins KD; He T; Goodman DW; Soriaga MP
    Chemphyschem; 2010 May; 11(7):1468-75. PubMed ID: 20394098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.
    Sun Z; Wang X; Liu Z; Zhang H; Yu P; Mao L
    Langmuir; 2010 Jul; 26(14):12383-9. PubMed ID: 20486650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes.
    Ji X; Lee KT; Holden R; Zhang L; Zhang J; Botton GA; Couillard M; Nazar LF
    Nat Chem; 2010 Apr; 2(4):286-93. PubMed ID: 21124509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles.
    Abe H; Matsumoto F; Alden LR; Warren SC; Abruña HD; DiSalvo FJ
    J Am Chem Soc; 2008 Apr; 130(16):5452-8. PubMed ID: 18370390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Pt/Ru bimetallic nanoparticles in high-temperature and high-pressure fluids.
    Ueji M; Harada M; Kimura Y
    J Colloid Interface Sci; 2008 Jun; 322(1):358-63. PubMed ID: 18377917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction.
    Gong K; Su D; Adzic RR
    J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.