These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20945423)

  • 21. Insertion Copolymerization of Difunctional Polar Vinyl Monomers with Ethylene.
    Gaikwad SR; Deshmukh SS; Gonnade RG; Rajamohanan PR; Chikkali SH
    ACS Macro Lett; 2015 Sep; 4(9):933-937. PubMed ID: 35596460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation of polymerization of polar vinyl monomers by discrete and hybrid metal catalysts.
    Chen EY
    Dalton Trans; 2009 Nov; (41):8784-93. PubMed ID: 19826708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous Coordination-Insertion Copolymerization for Producing High Molecular Weight Polar Polyolefins.
    Liu Y; Wang C; Mu H; Jian Z
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202404392. PubMed ID: 38548659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Palladium and Nickel Catalysts for Copolymerization of Olefins with Polar Monomers.
    Tan C; Chen C
    Angew Chem Int Ed Engl; 2019 May; 58(22):7192-7200. PubMed ID: 30719812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts.
    Tao WJ; Nakano R; Ito S; Nozaki K
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2835-9. PubMed ID: 26805398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copolymerization of ethylene with non-vinyl polar monomers.
    Nozaki K
    Proc Jpn Acad Ser B Phys Biol Sci; 2022; 98(5):222-226. PubMed ID: 35545528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances in Nickel Catalysts with Industrial Exploitability for Copolymerization of Ethylene with Polar Monomers.
    Wang Y; Lai J; Gao R; Gou Q; Li B; Zheng G; Zhang R; Yue Q; Song Z; Guo Z
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalyst-site-controlled coordination polymerization of polar vinyl monomers to highly syndiotactic polymers.
    Zhang Y; Ning Y; Caporaso L; Cavallo L; Chen EY
    J Am Chem Soc; 2010 Mar; 132(8):2695-709. PubMed ID: 20121281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into CO/styrene copolymerization by using Pd(II) catalysts containing modular pyridine-imidazoline ligands.
    Bastero A; Claver C; Ruiz A; Castillón S; Daura E; Bo C; Zangrando E
    Chemistry; 2004 Aug; 10(15):3747-60. PubMed ID: 15281159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic insights on the copolymerization of polar vinyl monomers with neutral Ni(II) catalysts.
    Berkefeld A; Drexler M; Möller HM; Mecking S
    J Am Chem Soc; 2009 Sep; 131(35):12613-22. PubMed ID: 19441790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Second-Coordination-Sphere Strategy to Modulate Nickel- and Palladium-Catalyzed Olefin Polymerization and Copolymerization.
    Li M; Wang X; Luo Y; Chen C
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11604-11609. PubMed ID: 28703356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers.
    Ouchi M; Terashima T; Sawamoto M
    Acc Chem Res; 2008 Sep; 41(9):1120-32. PubMed ID: 18793026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A disubstituted-norbornene-based comonomer strategy to address polar monomer problem.
    Xu M; Chen C
    Sci Bull (Beijing); 2021 Jul; 66(14):1429-1436. PubMed ID: 36654369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Polyethylene with In-Chain α,β-Unsaturated Ketone and Isolated Ketone Units: Pd-Catalyzed Ring-Opening Copolymerization of Cyclopropenone with Ethylene.
    Wang X; Seidel FW; Nozaki K
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12955-12959. PubMed ID: 31321845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaction of vinyl chloride with group 4 metal olefin polymerization catalysts.
    Stockland RA; Foley SR; Jordan RF
    J Am Chem Soc; 2003 Jan; 125(3):796-809. PubMed ID: 12526681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring electronic and steric effects on the insertion and polymerization reactivity of phosphinesulfonato Pd(II) catalysts.
    Neuwald B; Falivene L; Caporaso L; Cavallo L; Mecking S
    Chemistry; 2013 Dec; 19(52):17773-88. PubMed ID: 24265254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.
    Atkinson RC; Gibson VC; Long NJ; White AJ
    Dalton Trans; 2010 Aug; 39(32):7540-6. PubMed ID: 20614060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of the steric influence of alkylphosphine-sulfonate ligands on polymerization, leading to high-molecular-weight copolymers of ethylene and polar monomers.
    Ota Y; Ito S; Kuroda J; Okumura Y; Nozaki K
    J Am Chem Soc; 2014 Aug; 136(34):11898-901. PubMed ID: 25116272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination-insertion copolymerization of fundamental polar monomers.
    Nakamura A; Ito S; Nozaki K
    Chem Rev; 2009 Nov; 109(11):5215-44. PubMed ID: 19807133
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.