These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20945452)

  • 1. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites.
    Petit C; Mendoza B; Bandosz TJ
    Chemphyschem; 2010 Dec; 11(17):3678-84. PubMed ID: 20945452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents.
    Petit C; Bandosz TJ
    Dalton Trans; 2012 Apr; 41(14):4027-35. PubMed ID: 22353854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites.
    Levasseur B; Petit C; Bandosz TJ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3606-13. PubMed ID: 21067199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive adsorption of ammonia on Cu-based MOF/graphene composites.
    Petit C; Mendoza B; Bandosz TJ
    Langmuir; 2010 Oct; 26(19):15302-9. PubMed ID: 20825199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-promoted Zn-based metal-organic framework/graphene oxide composites for hydrogen sulfide removal.
    Huang ZH; Liu G; Kang F
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4942-7. PubMed ID: 22948163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt (hydr)oxide/graphite oxide composites: importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide.
    Mabayoje O; Seredych M; Bandosz TJ
    J Colloid Interface Sci; 2012 Jul; 378(1):1-9. PubMed ID: 22551475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface chemical and structural heterogeneity of copper-based MOF/graphite oxide composites on the adsorption of ammonia.
    Bashkova S; Bandosz TJ
    J Colloid Interface Sci; 2014 Mar; 417():109-14. PubMed ID: 24407665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of graphite features on the properties of metal-organic framework/graphite hybrid materials prepared using an in situ process.
    Petit C; Mendoza B; O'Donnell D; Bandosz TJ
    Langmuir; 2011 Aug; 27(16):10234-42. PubMed ID: 21755923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.
    Seredych M; Mabayoje O; Bandosz TJ
    Langmuir; 2012 Jan; 28(2):1337-46. PubMed ID: 22181932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined role of water and surface chemistry in reactive adsorption of ammonia on graphite oxides.
    Seredych M; Bandosz TJ
    Langmuir; 2010 Apr; 26(8):5491-8. PubMed ID: 20030350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.
    Mabayoje O; Seredych M; Bandosz TJ
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3316-24. PubMed ID: 22667349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites.
    Petit C; Bandosz TJ
    J Colloid Interface Sci; 2015 Jun; 447():139-51. PubMed ID: 25234622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of surface chemistry and morphology in the reactive adsorption of H₂S on iron (hydr)oxide/graphite oxide composites.
    Arcibar-Orozco JA; Wallace R; Mitchell JK; Bandosz TJ
    Langmuir; 2015 Mar; 31(9):2730-42. PubMed ID: 25675243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
    Luo J; Xu H; Liu Y; Zhao Y; Daemen LL; Brown C; Timofeeva TV; Ma S; Zhou HC
    J Am Chem Soc; 2008 Jul; 130(30):9626-7. PubMed ID: 18611006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature.
    Zhao Y; Seredych M; Zhong Q; Bandosz TJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4951-9. PubMed ID: 23679816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions.
    Ebrahim AM; Levasseur B; Bandosz TJ
    Langmuir; 2013 Jan; 29(1):168-74. PubMed ID: 23249274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites.
    Petit C; Huang L; Jagiello J; Kenvin J; Gubbins KE; Bandosz TJ
    Langmuir; 2011 Nov; 27(21):13043-51. PubMed ID: 21970728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177.
    Saha D; Deng S
    J Colloid Interface Sci; 2010 Aug; 348(2):615-20. PubMed ID: 20537655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Jan; 110(2):655-8. PubMed ID: 16471581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal.
    Bhoria N; Basina G; Pokhrel J; Kumar Reddy KS; Anastasiou S; Balasubramanian VV; AlWahedi YF; Karanikolos GN
    J Hazard Mater; 2020 Jul; 394():122565. PubMed ID: 32272328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.