BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20945496)

  • 1. Monitoring oxygen uptake in 3D tissue engineering scaffolds by phosphorescence quenching microscopy.
    Guaccio A; Netti PA
    Biotechnol Prog; 2010; 26(5):1494-500. PubMed ID: 20945496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences.
    Guaccio A; Guarino V; Perez MA; Cirillo V; Netti PA; Ambrosio L
    Biotechnol Bioeng; 2011 Aug; 108(8):1965-76. PubMed ID: 21351071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging tissue engineering scaffolds using multiphoton microscopy.
    Sun Y; Tan HY; Lin SJ; Lee HS; Lin TY; Jee SH; Young TH; Lo W; Chen WL; Dong CY
    Microsc Res Tech; 2008 Feb; 71(2):140-5. PubMed ID: 17943985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pore architecture on oxygen diffusion in 3D scaffolds for tissue engineering.
    Ahn G; Park JH; Kang T; Lee JW; Kang HW; Cho DW
    J Biomech Eng; 2010 Oct; 132(10):104506. PubMed ID: 20887024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.
    Ovsianikov A; Schlie S; Ngezahayo A; Haverich A; Chichkov BN
    J Tissue Eng Regen Med; 2007; 1(6):443-9. PubMed ID: 18265416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research development of injectable scaffolds for tissue regeneration].
    Hong Y; Gao C; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):463-5. PubMed ID: 17591283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser printing of cells into 3D scaffolds.
    Ovsianikov A; Gruene M; Pflaum M; Koch L; Maiorana F; Wilhelmi M; Haverich A; Chichkov B
    Biofabrication; 2010 Mar; 2(1):014104. PubMed ID: 20811119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of oxygen gradients in engineered tissue using a fluorescent sensor.
    Kellner K; Liebsch G; Klimant I; Wolfbeis OS; Blunk T; Schulz MB; Göpferich A
    Biotechnol Bioeng; 2002 Oct; 80(1):73-83. PubMed ID: 12209788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds.
    Mandoli C; Mecheri B; Forte G; Pagliari F; Pagliari S; Carotenuto F; Fiaccavento R; Rinaldi A; Di Nardo P; Licoccia S; Traversa E
    Macromol Biosci; 2010 Feb; 10(2):127-38. PubMed ID: 19890887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line fluorescent monitoring of the degradation of polymeric scaffolds for tissue engineering.
    Yang Y; Yiu HH; El Haj AJ
    Analyst; 2005 Nov; 130(11):1502-6. PubMed ID: 16222371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro].
    Liu XM; Liu H; Xiong FY; Chen ZL
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.
    Valentin JE; Freytes DO; Grasman JM; Pesyna C; Freund J; Gilbert TW; Badylak SF
    J Biomed Mater Res A; 2009 Dec; 91(4):1010-7. PubMed ID: 19097154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.
    Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ
    J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-interactive 3D-scaffold; advances and applications.
    Dutta RC; Dutta AK
    Biotechnol Adv; 2009; 27(4):334-9. PubMed ID: 19232387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.