These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 20945768)
1. Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. Nash MA; Hoffmann AA; Thomson LJ Ecol Appl; 2010 Sep; 20(6):1693-703. PubMed ID: 20945768 [TBL] [Abstract][Full Text] [Related]
2. Arthropods on grapes benefit more from fungicide reduction than from organic farming. Reiff JM; Sudarsan K; Hoffmann C; Entling MH Pest Manag Sci; 2023 Sep; 79(9):3271-3279. PubMed ID: 37071711 [TBL] [Abstract][Full Text] [Related]
3. Commercial agrochemical applications in vineyards do not influence ant communities. Chong CS; Hoffmann AA; Thomson LJ Environ Entomol; 2007 Dec; 36(6):1374-83. PubMed ID: 18284765 [TBL] [Abstract][Full Text] [Related]
4. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests. Biddinger DJ; Leslie TW; Joshi NK J Econ Entomol; 2014 Jun; 107(3):1084-91. PubMed ID: 25026668 [TBL] [Abstract][Full Text] [Related]
5. Diverging Effects of Landscape Factors and Inter-Row Management on the Abundance of Beneficial and Herbivorous Arthropods in Andalusian Vineyards (Spain). Judt C; Guzmán G; Gómez JA; Cabezas JM; Entrenas JA; Winter S; Zaller JG; Paredes D Insects; 2019 Sep; 10(10):. PubMed ID: 31561623 [TBL] [Abstract][Full Text] [Related]
6. The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: laboratory studies. Tirello P; Pozzebon A; Duso C Chemosphere; 2013 Oct; 93(6):1139-44. PubMed ID: 23856464 [TBL] [Abstract][Full Text] [Related]
7. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards. Van Timmeren S; Wise JC; Isaacs R Pest Manag Sci; 2012 Apr; 68(4):537-42. PubMed ID: 22290809 [TBL] [Abstract][Full Text] [Related]
8. [Effects of Bacillus thuringiensis transgenic rice and chemical insecticides on arthropod communities in paddy-fields]. Liu Z; Ye G; Hu C Ying Yong Sheng Tai Xue Bao; 2004 Dec; 15(12):2309-14. PubMed ID: 15825447 [TBL] [Abstract][Full Text] [Related]
9. Reducing the impact of pesticides on biological control in Australian vineyards: pesticide mortality and fecundity effects on an indicator species, the predatory mite Euseius victoriensis (Acari: Phytoseiidae). Bernard MB; Cole P; Kobelt A; Horne PA; Altmann J; Wratten SD; Yen AL J Econ Entomol; 2010 Dec; 103(6):2061-71. PubMed ID: 21309226 [TBL] [Abstract][Full Text] [Related]
10. Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Hayasaka D; Korenaga T; Suzuki K; Saito F; Sánchez-Bayo F; Goka K Ecotoxicol Environ Saf; 2012 Jun; 80():355-62. PubMed ID: 22521688 [TBL] [Abstract][Full Text] [Related]
11. Impact of Location, Cropping History, Tillage, and Chlorpyrifos on Soil Arthropods in Peanut. Cardoza YJ; Drake WL; Jordan DL; Schroeder-Moreno MS; Arellano C; Brandenburg RL Environ Entomol; 2015 Aug; 44(4):951-9. PubMed ID: 26314040 [TBL] [Abstract][Full Text] [Related]
12. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
13. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry. Anbarashan P; Gopalswamy P Pak J Biol Sci; 2013 Jul; 16(14):661-70. PubMed ID: 24505991 [TBL] [Abstract][Full Text] [Related]
14. Insecticide-induced hormesis and arthropod pest management. Guedes RN; Cutler GC Pest Manag Sci; 2014 May; 70(5):690-7. PubMed ID: 24155227 [TBL] [Abstract][Full Text] [Related]
15. Pesticides selectivity list to beneficial arthropods in four field vegetable crops. Hautier L; Jansen JP; Mabon N; Schiffers B Commun Agric Appl Biol Sci; 2007; 72(2):99-107. PubMed ID: 18399430 [TBL] [Abstract][Full Text] [Related]
16. Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Janssen A; van Rijn PCJ Ecol Lett; 2021 Sep; 24(9):2010-2024. PubMed ID: 34160871 [TBL] [Abstract][Full Text] [Related]
17. The New Transgenic cry1Ab/vip3H Rice Poses No Unexpected Ecological Risks to Arthropod Communities in Rice Agroecosystems. Lu Z; Dang C; Han N; Shen Z; Peng Y; Stanley D; Ye G Environ Entomol; 2016 Apr; 45(2):518-25. PubMed ID: 26721297 [TBL] [Abstract][Full Text] [Related]
18. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico. Armenta R; Martínez AM; Chapman JW; Magallanes R; Goulson D; Caballero P; Cave RD; Cisneros J; Valle J; Castillejos V; Penagos DI; García LF; Williams T J Econ Entomol; 2003 Jun; 96(3):649-61. PubMed ID: 12852601 [TBL] [Abstract][Full Text] [Related]
19. Effects of clothianidin-treated seed on the arthropod community in a mid-Atlantic no-till corn agroecosystem. Disque HH; Hamby KA; Dubey A; Taylor C; Dively GP Pest Manag Sci; 2019 Apr; 75(4):969-978. PubMed ID: 30192045 [TBL] [Abstract][Full Text] [Related]
20. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Gross K; Rosenheim JA Ecol Appl; 2011 Oct; 21(7):2770-80. PubMed ID: 22073658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]