These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 20945846)

  • 1. Effective strain in helical rippled carbon nanotubes: a unifying concept for understanding electromechanical response.
    Zhang DB; Dumitrică T
    ACS Nano; 2010 Nov; 4(11):6966-72. PubMed ID: 20945846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the electromechanical behavior of multiwall carbon nanotubes.
    Pantano A; Buongiorno Nardelli M
    ACS Nano; 2009 Oct; 3(10):3266-72. PubMed ID: 19772304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bending and buckling of carbon nanotubes under large strain.
    Falvo MR; Clary GJ; Taylor RM; Chi V; Brooks FP; Washburn S; Superfine R
    Nature; 1997 Oct; 389(6651):582-4. PubMed ID: 9335495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide.
    Ju SY; Doll J; Sharma I; Papadimitrakopoulos F
    Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of deformation and rupture of super carbon nanotubes under tension.
    Qin Z; Feng XQ; Zou J; Yin Y; Yu SW
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6274-82. PubMed ID: 19205194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic deformation of carbon-nanotube nanorings.
    Zheng M; Ke C
    Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation.
    Aslam Z; Abraham M; Brown A; Rand B; Brydson R
    J Microsc; 2008 Jul; 231(Pt 1):144-55. PubMed ID: 18638198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotube Electromechanics beyond Carbon: The Case of WS2.
    Levi R; Garel J; Teich D; Seifert G; Tenne R; Joselevich E
    ACS Nano; 2015 Dec; 9(12):12224-32. PubMed ID: 26451698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of the size effect of carbon nanotubes on the bulk modulus of a lipid bilayer.
    Gan Y; Chen Z
    Mol Cell Biomech; 2006 Sep; 3(3):89-94. PubMed ID: 17263255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bond order effects in electromechanical actuation of armchair single-walled carbon nanotubes.
    Mirfakhrai T; Krishna-Prasad R; Nojeh A; Madden JD
    J Chem Phys; 2010 Feb; 132(7):074703. PubMed ID: 20170240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of spin and orbital motion of electrons in carbon nanotubes.
    Kuemmeth F; Ilani S; Ralph DC; McEuen PL
    Nature; 2008 Mar; 452(7186):448-52. PubMed ID: 18368113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transitions of adsorbed atoms on the surface of a carbon nanotube.
    Wang Z; Wei J; Morse P; Dash JG; Vilches OE; Cobden DH
    Science; 2010 Jan; 327(5965):552-5. PubMed ID: 20110499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of electron orbital magnetic moments in carbon nanotubes.
    Minot ED; Yaish Y; Sazonova V; McEuen PL
    Nature; 2004 Apr; 428(6982):536-9. PubMed ID: 15057825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices.
    Dieckmann GR; Dalton AB; Johnson PA; Razal J; Chen J; Giordano GM; Muñoz E; Musselman IH; Baughman RH; Draper RK
    J Am Chem Soc; 2003 Feb; 125(7):1770-7. PubMed ID: 12580602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering.
    Sfeir MY; Wang F; Huang L; Chuang CC; Hone J; O'brien SP; Heinz TF; Brus LE
    Science; 2004 Nov; 306(5701):1540-3. PubMed ID: 15514117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.