BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20945859)

  • 1. Energetics of association in poly(lactic acid)-based hydrogels with crystalline and nanoparticle-polymer junctions.
    Agrawal SK; Sanabria-DeLong N; Bhatia SK; Tew GN; Bhatia SR
    Langmuir; 2010 Nov; 26(22):17330-8. PubMed ID: 20945859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence.
    Mao H; Shan G; Bao Y; Wu ZL; Pan P
    Soft Matter; 2016 May; 12(20):4628-37. PubMed ID: 27121732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-reinforced associative network hydrogels.
    Agrawal SK; Sanabria-Delong N; Tew GN; Bhatia SR
    Langmuir; 2008 Nov; 24(22):13148-54. PubMed ID: 18947244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC
    J Phys Chem B; 2011 Sep; 115(38):11029-37. PubMed ID: 21838279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels.
    Aamer KA; Sardinha H; Bhatia SR; Tew GN
    Biomaterials; 2004 Mar; 25(6):1087-93. PubMed ID: 14615174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA.
    Petit A; Müller B; Meijboom R; Bruin P; van de Manakker F; Versluijs-Helder M; de Leede LG; Doornbos A; Landin M; Hennink WE; Vermonden T
    Biomacromolecules; 2013 Sep; 14(9):3172-82. PubMed ID: 23875877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride.
    Li F; Li S; Ghzaoui AE; Nouailhas H; Zhuo R
    Langmuir; 2007 Feb; 23(5):2778-83. PubMed ID: 17243742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles.
    Schexnailder P; Loizou E; Porcar L; Butler P; Schmidt G
    Phys Chem Chem Phys; 2009 Apr; 11(15):2760-6. PubMed ID: 19421534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of stereochemistry on rheology and nanostructure of PLA-PEO-PLA triblocks: stiff gels at intermediate l/d-lactide ratios.
    Yin X; Hewitt DRO; Quah SP; Zheng B; Mattei GS; Khalifah PG; Grubbs RB; Bhatia SR
    Soft Matter; 2018 Sep; 14(35):7255-7263. PubMed ID: 30137095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro- to nanoscale structure of biocompatible PLA-PEO-PLA hydrogels.
    Agrawal SK; Sanabria-Delong N; Jemian PR; Tew GN; Bhatia SR
    Langmuir; 2007 Apr; 23(9):5039-44. PubMed ID: 17397197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bulk Enthalpy of Melting of Poly (l-lactic acid) (PLLA) Determined by Fast Scanning Chip Calorimetry.
    Jariyavidyanont K; Du M; Yu Q; Thurn-Albrecht T; Schick C; Androsch R
    Macromol Rapid Commun; 2022 Jun; 43(11):e2200148. PubMed ID: 35343619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the segmental dynamics in semi-crystalline poly(lactic acid) using mechanical spectroscopies.
    Mano JF
    Macromol Biosci; 2005 Apr; 5(4):337-43. PubMed ID: 15844128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers.
    Nakajima M; Nakajima H; Fujiwara T; Kimura Y; Sasaki S
    Langmuir; 2014 Nov; 30(46):14030-8. PubMed ID: 25365934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior.
    Karavelidis V; Giliopoulos D; Karavas E; Bikiaris D
    Eur J Pharm Sci; 2010 Dec; 41(5):636-43. PubMed ID: 20863892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a nanostructured star block copolymer with a cyclotriphosphazene core.
    Han JK; Kim ST; Kim HJ; Kwon YK
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3446-9. PubMed ID: 17252786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique.
    Hamoudeh M; Fessi H; Mehier H; Faraj AA; Canet-Soulas E
    Int J Pharm; 2008 Feb; 348(1-2):125-36. PubMed ID: 17716842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.
    Joshi N; Rawat K; Bohidar HB
    Carbohydr Polym; 2016 Jan; 136():242-9. PubMed ID: 26572352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.