BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20945869)

  • 21. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment.
    Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M
    J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VSViewer3D: a tool for interactive data mining of three-dimensional virtual screening data.
    Diller KI; Diller DJ
    J Chem Inf Model; 2014 Dec; 54(12):3446-52. PubMed ID: 25423583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of reduced graphs to encode bioisosterism for similarity-based virtual screening.
    Birchall K; Gillet VJ; Willett P; Ducrot P; Luttmann C
    J Chem Inf Model; 2009 Jun; 49(6):1330-46. PubMed ID: 19485397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17.
    Awale M; Reymond JL
    J Chem Inf Model; 2014 Jul; 54(7):1892-907. PubMed ID: 24988038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments.
    Ebalunode JO; Zheng W
    J Chem Inf Model; 2009 Jun; 49(6):1313-20. PubMed ID: 19480404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FieldScreen: virtual screening using molecular fields. Application to the DUD data set.
    Cheeseright TJ; Mackey MD; Melville JL; Vinter JG
    J Chem Inf Model; 2008 Nov; 48(11):2108-17. PubMed ID: 18991371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerating chemical database searching using graphics processing units.
    Liu P; Agrafiotis DK; Rassokhin DN; Yang E
    J Chem Inf Model; 2011 Aug; 51(8):1807-16. PubMed ID: 21696144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WebMolCS: A Web-Based Interface for Visualizing Molecules in Three-Dimensional Chemical Spaces.
    Awale M; Probst D; Reymond JL
    J Chem Inf Model; 2017 Apr; 57(4):643-649. PubMed ID: 28316236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational sampling for large-scale virtual screening: accuracy versus ensemble size.
    Griewel A; Kayser O; Schlosser J; Rarey M
    J Chem Inf Model; 2009 Oct; 49(10):2303-11. PubMed ID: 19788252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consideration of molecular weight during compound selection in virtual target-based database screening.
    Pan Y; Huang N; Cho S; MacKerell AD
    J Chem Inf Comput Sci; 2003; 43(1):267-72. PubMed ID: 12546562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T; Ronkko T; Poso A
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints.
    Vogt M; Bajorath J
    Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures.
    Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A
    Org Biomol Chem; 2004 Nov; 2(22):3256-66. PubMed ID: 15534703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication.
    Bender A; Glen RC
    J Chem Inf Model; 2005; 45(5):1369-75. PubMed ID: 16180913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening.
    Durán A; Zamora I; Pastor M
    J Chem Inf Model; 2009 Sep; 49(9):2129-38. PubMed ID: 19728739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient virtual screening using multiple protein conformations described as negative images of the ligand-binding site.
    Virtanen SI; Pentikäinen OT
    J Chem Inf Model; 2010 Jun; 50(6):1005-11. PubMed ID: 20504004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Web-based 3D-visualization of the DrugBank chemical space.
    Awale M; Reymond JL
    J Cheminform; 2016; 8():25. PubMed ID: 27148409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do not hesitate to use Tversky-and other hints for successful active analogue searches with feature count descriptors.
    Horvath D; Marcou G; Varnek A
    J Chem Inf Model; 2013 Jul; 53(7):1543-62. PubMed ID: 23731338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data.
    Rohrer SG; Baumann K
    J Chem Inf Model; 2009 Feb; 49(2):169-84. PubMed ID: 19434821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.