BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20945873)

  • 1. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles.
    Lin JH; Chang CW; Wu ZH; Tseng WL
    Anal Chem; 2010 Nov; 82(21):8775-9. PubMed ID: 20945873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor.
    Huang CC; Tseng WL
    Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymine-based molecular beacon for sensing adenosine based on the inhibition of S-adenosylhomocysteine hydrolase activity.
    Nieh CC; Tseng WL
    Biosens Bioelectron; 2014 Nov; 61():404-9. PubMed ID: 24914852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for fluorescence sensing of adenosine and alkaline phosphatase based on the inhibition of S-adenosylhomocysteine hydrolase activity.
    Lin JH; Tseng WL
    Biosens Bioelectron; 2013 Mar; 41():379-85. PubMed ID: 23040372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution.
    Xiao Q; Shang F; Xu X; Li Q; Lu C; Lin JM
    Biosens Bioelectron; 2011 Dec; 30(1):211-5. PubMed ID: 21978483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent sensing of homocysteine in urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde.
    Lin JH; Chang CW; Tseng WL
    Analyst; 2010 Jan; 135(1):104-10. PubMed ID: 20024188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine.
    Wu HP; Huang CC; Cheng TL; Tseng WL
    Talanta; 2008 Jul; 76(2):347-52. PubMed ID: 18585288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.
    Lin JH; Tseng WL
    Talanta; 2015 Jan; 132():44-51. PubMed ID: 25476277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle extraction followed by o-phthaldialdehyde derivatization for fluorescence sensing of different forms of homocysteine in plasma.
    Lai YJ; Tseng WL
    Talanta; 2012 Mar; 91():103-9. PubMed ID: 22365687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles.
    Lu C; Zhang N; Li J; Li Q
    Talanta; 2010 Apr; 81(1-2):698-702. PubMed ID: 20188984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescence-based assay for the measurement of S-adenosylhomocysteine hydrolase activity in biological samples.
    Hudec R; Hamada K; Mikoshiba K
    Anal Biochem; 2013 Feb; 433(2):95-101. PubMed ID: 23079506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway.
    Xiao Y; Xia J; Cheng J; Huang H; Zhou Y; Yang X; Su X; Ke Y; Ling W
    Circulation; 2019 May; 139(19):2260-2277. PubMed ID: 30773021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-adenosylhomocysteine hydrolase, S-adenosylmethionine, S-adenosylhomocysteine: correlations with ribavirin induced anemia.
    Altintas E; Sezgin O
    Med Hypotheses; 2004; 63(5):834-7. PubMed ID: 15488656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorosurfactant-capped gold nanoparticles-based label-free colorimetric assay for Au³⁺ with tunable dynamic range via a redox strategy.
    Yang B; Zhang XB; Liu WN; Hu R; Tan W; Shen GL; Yu RQ
    Biosens Bioelectron; 2013 Oct; 48():1-5. PubMed ID: 23644005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly enhanced electrochemiluminescent strategy for tumor biomarkers detection with in situ generation of L-homocysteine for signal amplification.
    Wang H; Chai Y; Yuan R; Cao Y; Bai L
    Anal Chim Acta; 2014 Mar; 815():16-21. PubMed ID: 24560368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay.
    Cheng F; He Y; Xing XJ; Tan DD; Lin Y; Pang DW; Tang HW
    Analyst; 2015 Mar; 140(5):1572-7. PubMed ID: 25597304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles.
    Lu C; Zu Y; Yam VW
    Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-regulated unmodified gold nanoparticle aggregation: a label free colorimetric assay for rapid and sensitive detection of adenosine deaminase activity and inhibition.
    Zhang L; Zhao J; Jiang J; Yu R
    Chem Commun (Camb); 2012 Nov; 48(89):10996-8. PubMed ID: 23037591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW; Yu CJ; Tseng WL
    Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.