These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20945890)

  • 21. A new and integrated hydro-economic accounting and analytical framework for water resources: a case study for North China.
    Guan D; Hubacek K
    J Environ Manage; 2008 Sep; 88(4):1300-13. PubMed ID: 17719717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
    Qian Y; Dong H; Geng Y; Zhong S; Tian X; Yu Y; Chen Y; Moss DA
    Water Res; 2018 Sep; 141():208-216. PubMed ID: 29793160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional water footprint evaluation in China: a case of Liaoning.
    Dong H; Geng Y; Sarkis J; Fujita T; Okadera T; Xue B
    Sci Total Environ; 2013 Jan; 442():215-24. PubMed ID: 23178781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.
    Chen Q; Liu J; Ho KC; Yang Z
    Sci Total Environ; 2012 Mar; 420():79-89. PubMed ID: 22321901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of environmental flow requirements for the river ecosystem in the Haihe River Basin, China.
    Yang T; Liu J; Chen Q; Zhang J; Yang Y
    Water Sci Technol; 2013; 67(4):699-707. PubMed ID: 23306245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spillover risk analysis of virtual water trade based on multi-regional input-output model -A case study.
    Zhang W; Fan X; Liu Y; Wang S; Chen B
    J Environ Manage; 2020 Dec; 275():111242. PubMed ID: 32861004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding Beijing's water challenge: a decomposition analysis of changes in Beijing's water footprint between 1997 and 2007.
    Zhang Z; Shi M; Yang H
    Environ Sci Technol; 2012 Nov; 46(22):12373-80. PubMed ID: 23127171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The virtual water content of major grain crops and virtual water flows between regions in China.
    Sun SK; Wu PT; Wang YB; Zhao XN
    J Sci Food Agric; 2013 Apr; 93(6):1427-37. PubMed ID: 23174764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The water footprint of humanity.
    Hoekstra AY; Mekonnen MM
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3232-7. PubMed ID: 22331890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Appraisal of the water footprint of irrigated agriculture in a semi-arid area: The Segura River Basin.
    Martínez-Paz JM; Gomariz-Castillo F; Pellicer-Martínez F
    PLoS One; 2018; 13(11):e0206852. PubMed ID: 30399163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on river regulation measures of dried-up rivers of Haihe River basin, China.
    Peng J; Li S; Qi L
    Water Sci Technol; 2013; 67(6):1224-9. PubMed ID: 23508145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The economic impact of restricted water supply: a computable general equilibrium analysis.
    Berrittella M; Hoekstra AY; Rehdanz K; Roson R; Tol RS
    Water Res; 2007 Apr; 41(8):1799-813. PubMed ID: 17343892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the virtual water trade in water-scarce basin: an environmentally extended input-output analysis in the Yellow River Basin of China.
    Zhang B; Niu N; Li H; Tao HW; Wang ZH
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118396-118409. PubMed ID: 37910368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fair and sustainable irrigation water management in the Babai basin, Nepal.
    Adhikari B; Verhoeven R; Troch P
    Water Sci Technol; 2009; 59(8):1505-13. PubMed ID: 19403963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An eco-environmental water demand based model for optimising water resources using hybrid genetic simulated annealing algorithms. Part I. Model development.
    Wang X; Sun Y; Song L; Mei C
    J Environ Manage; 2009 Jun; 90(8):2628-35. PubMed ID: 19269735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An online water quality monitoring and management system developed for the Liming River basin in Daqing, China.
    Yang W; Nan J; Sun D
    J Environ Manage; 2008 Jul; 88(2):318-25. PubMed ID: 17462812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949.
    Wang F; Mu X; Li R; Fleskens L; Stringer LC; Ritsema CJ
    Sci Total Environ; 2015 Mar; 508():166-77. PubMed ID: 25478653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Workshop 7 (synthesis): trade-offs in water for food and environmental security--urban/agricultural trade-off.
    Rahman AU; Kadi MA; Rockström J
    Water Sci Technol; 2002; 45(8):191-3. PubMed ID: 12019821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual scarce water in China.
    Feng K; Hubacek K; Pfister S; Yu Y; Sun L
    Environ Sci Technol; 2014 Jul; 48(14):7704-13. PubMed ID: 24922282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.