BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20946360)

  • 1. Peculiar properties of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media using O-substituted hydroxylamines.
    Dyukova TV; Druzhko AB
    Photochem Photobiol; 2010; 86(6):1255-8. PubMed ID: 20946360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical characteristics of polymer films based on bacteriorhodopsin for irreversible recording of optical information.
    Druzhko AB
    Photochem Photobiol; 2009; 85(2):614-6. PubMed ID: 19222793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some factors affecting the process of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media.
    Druzhko AB; Dyukova TV; Pirutin SK
    Eur Biophys J; 2017 Sep; 46(6):509-515. PubMed ID: 28474199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochromic polymer films based on a 14-F bacteriorhodopsin derivative.
    Druzhko AB; Alvarez R; de Lera AR
    J Biomater Sci Polym Ed; 2008; 19(12):1585-95. PubMed ID: 19017472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 14-Fluoro-bacteriorhodopsin gelatin films for dynamic holography recording.
    Korchemskaya E; Burykin N; de Lera A; Alvarez R; Pirutin S; Druzhko A
    Photochem Photobiol; 2005; 81(4):920-3. PubMed ID: 16124833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity.
    Korchemskaya E; Burykin N; Bugaychuk S; Maksymova O; Ebrey T; Balashov S
    Photochem Photobiol; 2007; 83(2):403-8. PubMed ID: 17576349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced transformation of 14-F-bacteriorhodopsin gelatin films based on both wild type and D96N mutant.
    Druzhko AB; Shakhbazian VY; Alvarez R; de Lera AR; Weetall HH
    Biosystems; 2001 Jan; 59(1):53-60. PubMed ID: 11226626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism and cross-linking studies of bacteriorhodopsin mutants.
    Karnaukhova E; Schey KL; Crouch RK
    Amino Acids; 2006 Feb; 30(1):17-23. PubMed ID: 16477391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of the BC loop in the correct folding of bacteriorhodopsin as revealed by solid-state NMR.
    Kawamura I; Tanabe J; Ohmine M; Yamaguchi S; Tuzi S; Naito A
    Photochem Photobiol; 2009; 85(2):624-30. PubMed ID: 19267877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary ultrasonication affects the rate of the bacteriorhodopsin bleaching and the effectiveness of the reconstitution process in bacterioopsin.
    Druzhko AB; Pirutin SK
    Photochem Photobiol; 2014; 90(5):1207-10. PubMed ID: 24678657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional crystallization of Escherichia coli-expressed bacteriorhodopsin and its D96N variant: high resolution structural studies in projection.
    Mitra AK; Miercke LJ; Turner GJ; Shand RF; Betlach MC; Stroud RM
    Biophys J; 1993 Sep; 65(3):1295-306. PubMed ID: 8241409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.
    Subramaniam S; Marti T; Rösselet SJ; Rothschild KJ; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2583-7. PubMed ID: 2006195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dehydration on photoinduced transformation in gelatin films made with 14-fluoro bacteriorhodopsin derivatives.
    Druzhko AB; Pirutin SK; de Lera AR; Alvarez R; Weetall HH
    Appl Biochem Biotechnol; 2005 Feb; 120(2):121-32. PubMed ID: 15695841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light.
    Wang L; Shen Z; Wang J; Li B; Chen F; Yang W; Feng X
    Biochem Biophys Res Commun; 2006 May; 343(3):899-903. PubMed ID: 16564498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH.
    Balashov SP; Lu M; Imasheva ES; Govindjee R; Ebrey TG; Othersen B; Chen Y; Crouch RK; Menick DR
    Biochemistry; 1999 Feb; 38(7):2026-39. PubMed ID: 10026285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buffer effects on electric signals of light-excited bacteriorhodopsin mutants.
    Tóth-Boconádi R; Dér A; Taneva SG; Tuparev NP; Keszthelyi L
    Eur Biophys J; 2001; 30(2):140-6. PubMed ID: 11409465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient approach to determine the pK(a) of the proton release complex in the photocycle of retinal proteins.
    Wu J; Ma D; Wang Y; Ming M; Balashov SP; Ding J
    J Phys Chem B; 2009 Apr; 113(13):4482-91. PubMed ID: 19281200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.