These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20946600)

  • 1. Promoter prediction in E. coli based on SIDD profiles and Artificial Neural Networks.
    Bland C; Newsome AS; Markovets AA
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S17. PubMed ID: 20946600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-induced DNA duplex destabilization (SIDD) in the E. coli genome: SIDD sites are closely associated with promoters.
    Wang H; Noordewier M; Benham CJ
    Genome Res; 2004 Aug; 14(8):1575-84. PubMed ID: 15289476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress.
    Wang H; Benham CJ
    BMC Bioinformatics; 2006 May; 7():248. PubMed ID: 16677393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in silico prediction of promoters in bacterial genomes.
    Towsey M; Hogan JM; Mathews S; Timms P
    Genome Inform; 2007; 19():178-89. PubMed ID: 18546515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIDDBASE: a database containing the stress-induced DNA duplex destabilization (SIDD) profiles of complete microbial genomes.
    Wang H; Kaloper M; Benham CJ
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D373-8. PubMed ID: 16381890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of stress-induced duplex destabilization in long genomic DNA sequences.
    Benham CJ; Bi C
    J Comput Biol; 2004; 11(4):519-43. PubMed ID: 15579230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhelical destabilization in regulatory regions of stress response genes.
    Wang H; Benham CJ
    PLoS Comput Biol; 2008 Jan; 4(1):e17. PubMed ID: 18208321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E. coli promoter prediction using feed-forward neural networks.
    Zhang F; Kuo MD; Brunkhors A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2025-7. PubMed ID: 17946085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple collagen I gene regulatory elements have sites of stress-induced DNA duplex destabilization and nuclear scaffold/matrix association potential.
    Mielke C; Christensen MO; Westergaard O; Bode J; Benham CJ; Breindl M
    J Cell Biochem; 2002; 84(3):484-96. PubMed ID: 11813254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pHMM-ANN based discriminative approach to promoter identification in prokaryote genomic contexts.
    Mann S; Li J; Chen YP
    Nucleic Acids Res; 2007; 35(2):e12. PubMed ID: 17170007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N4: a precise and highly sensitive promoter predictor using neural network fed by nearest neighbors.
    Askary A; Masoudi-Nejad A; Sharafi R; Mizbani A; Parizi SN; Purmasjedi M
    Genes Genet Syst; 2009 Dec; 84(6):425-30. PubMed ID: 20228580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAPPHIRE: a neural network based classifier for σ70 promoter prediction in Pseudomonas.
    Coppens L; Lavigne R
    BMC Bioinformatics; 2020 Sep; 21(1):415. PubMed ID: 32962628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations of Escherichia coli promoter sequences with artificial neural networks: new signals discovered upstream of the transcriptional startpoint.
    Pedersen AG; Engelbrecht J
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():292-9. PubMed ID: 7584449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Algorithms for Automation of Postgenomic Data Analyses:
    Coelho RV; Dall'Alba G; de Avila E Silva S; Echeverrigaray S; Delamare APL
    OMICS; 2020 May; 24(5):300-309. PubMed ID: 31573385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of gene expression by a novel DNA structural transmission mechanism that requires supercoiling-induced DNA duplex destabilization in an upstream activating sequence.
    Sheridan SD; Benham CJ; Hatfield GW
    J Biol Chem; 1998 Aug; 273(33):21298-308. PubMed ID: 9694890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and analysis of prokaryotic promoters based on sequence features.
    Liu X; Guo Z; He T; Ren M
    Biosystems; 2020 Nov; 197():104218. PubMed ID: 32755610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA duplex stability as discriminative characteristic for Escherichia coli σ(54)- and σ(28)- dependent promoter sequences.
    de Avila e Silva S; Forte F; T S Sartor I; Andrighetti T; J L Gerhardt G; Longaray Delamare AP; Echeverrigaray S
    Biologicals; 2014 Jan; 42(1):22-8. PubMed ID: 24172230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences.
    Burden S; Lin YX; Zhang R
    Bioinformatics; 2005 Mar; 21(5):601-7. PubMed ID: 15454410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network.
    Meng H; Wang J; Xiong Z; Xu F; Zhao G; Wang Y
    PLoS One; 2013; 8(4):e60288. PubMed ID: 23560087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of structural and functional features of protein and nucleic acid sequences by artificial neural networks.
    Hirst JD; Sternberg MJ
    Biochemistry; 1992 Aug; 31(32):7211-8. PubMed ID: 1510913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.