These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20946605)

  • 1. A predictive model for secondary RNA structure using graph theory and a neural network.
    Koessler DR; Knisley DJ; Knisley J; Haynes T
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S21. PubMed ID: 20946605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of secondary RNA structure using domination based parameters on trees.
    Haynes T; Knisley D; Seier E; Zou Y
    BMC Bioinformatics; 2006 Mar; 7():108. PubMed ID: 16515683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition.
    Zhao J; Malmberg RL; Cai L
    J Math Biol; 2008 Jan; 56(1-2):145-59. PubMed ID: 17906862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design.
    Gan HH; Pasquali S; Schlick T
    Nucleic Acids Res; 2003 Jun; 31(11):2926-43. PubMed ID: 12771219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pair hidden Markov models on tree structures.
    Sakakibara Y
    Bioinformatics; 2003; 19 Suppl 1():i232-40. PubMed ID: 12855464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.
    Li Y; Shi X; Liang Y; Xie J; Zhang Y; Ma Q
    BMC Bioinformatics; 2017 Jan; 18(1):51. PubMed ID: 28109252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RiboDiffusion: tertiary structure-based RNA inverse folding with generative diffusion models.
    Huang H; Lin Z; He D; Hong L; Li Y
    Bioinformatics; 2024 Jun; 40(Supplement_1):i347-i356. PubMed ID: 38940178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel RNA design candidates by clustering the extended RNA-As-Graphs library.
    Jain S; Zhu Q; Paz ASP; Schlick T
    Biochim Biophys Acta Gen Subj; 2020 Jun; 1864(6):129534. PubMed ID: 31954797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus folding of unaligned RNA sequences revisited.
    Bafna V; Tang H; Zhang S
    J Comput Biol; 2006 Mar; 13(2):283-95. PubMed ID: 16597240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA secondary structure prediction with convolutional neural networks.
    Saman Booy M; Ilin A; Orponen P
    BMC Bioinformatics; 2022 Feb; 23(1):58. PubMed ID: 35109787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algebraic language for RNA pseudoknots comparison.
    Quadrini M; Tesei L; Merelli E
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):161. PubMed ID: 30999864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on RNA secondary structure predicting via bidirectional recurrent neural network.
    Lu W; Cao Y; Wu H; Ding Y; Song Z; Zhang Y; Fu Q; Li H
    BMC Bioinformatics; 2021 Sep; 22(Suppl 3):431. PubMed ID: 34496763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-Dependent Deep Learning Model for RNA Secondary Structure Prediction.
    Mao K; Wang J; Xiao Y
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy minimization to predict RNA secondary structures and computational RNA design.
    Churkin A; Weinbrand L; Barash D
    Methods Mol Biol; 2015; 1269():3-16. PubMed ID: 25577369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse folding with RNA-As-Graphs produces a large pool of candidate sequences with target topologies.
    Jain S; Tao Y; Schlick T
    J Struct Biol; 2020 Mar; 209(3):107438. PubMed ID: 31874236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD-NuSS: A Web Server for the Automated Secondary Structural Characterization of the Nucleic Acids from Circular Dichroism Spectra Using Extreme Gradient Boosting Decision-Tree, Neural Network and Kohonen Algorithms.
    Sathyaseelan C; Vijayakumar V; Rathinavelan T
    J Mol Biol; 2021 May; 433(11):166629. PubMed ID: 32841657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classifying multigraph models of secondary RNA structure using graph-theoretic descriptors.
    Knisley D; Knisley J; Ross C; Rockney A
    ISRN Bioinform; 2012; 2012():157135. PubMed ID: 25969746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RCPred: RNA complex prediction as a constrained maximum weight clique problem.
    Legendre A; Angel E; Tahi F
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):128. PubMed ID: 30925864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.